from easydict import EasyDict agent_num = 8 collector_env_num = 8 evaluator_env_num = 8 special_global_state = True main_config = dict( exp_name='smac_3s5z_mappo_seed0', env=dict( map_name='3s5z', difficulty=7, reward_only_positive=True, mirror_opponent=False, agent_num=agent_num, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=32, stop_value=0.99, death_mask=False, special_global_state=special_global_state, # save_replay_episodes = 1, manager=dict( shared_memory=False, reset_timeout=6000, ), ), policy=dict( cuda=True, multi_agent=True, action_space='discrete', model=dict( # (int) agent_num: The number of the agent. # For SMAC 3s5z, agent_num=8; for 2c_vs_64zg, agent_num=2. agent_num=agent_num, # (int) obs_shape: The shapeension of observation of each agent. # For 3s5z, obs_shape=150; for 2c_vs_64zg, agent_num=404. # (int) global_obs_shape: The shapeension of global observation. # For 3s5z, obs_shape=216; for 2c_vs_64zg, agent_num=342. agent_obs_shape=150, #global_obs_shape=216, global_obs_shape=295, # (int) action_shape: The number of action which each agent can take. # action_shape= the number of common action (6) + the number of enemies. # For 3s5z, obs_shape=14 (6+8); for 2c_vs_64zg, agent_num=70 (6+64). action_shape=14, # (List[int]) The size of hidden layer # hidden_size_list=[64], action_space='discrete' ), # used in state_num of hidden_state learn=dict( epoch_per_collect=5, batch_size=3200, learning_rate=5e-4, # ============================================================== # The following configs is algorithm-specific # ============================================================== # (float) The loss weight of value network, policy network weight is set to 1 value_weight=0.5, # (float) The loss weight of entropy regularization, policy network weight is set to 1 entropy_weight=0.0, # (float) PPO clip ratio, defaults to 0.2 clip_ratio=0.5, # (bool) Whether to use advantage norm in a whole training batch adv_norm=False, value_norm=True, ppo_param_init=True, grad_clip_type='clip_norm', grad_clip_value=10, ignore_done=False, ), collect=dict(env_num=collector_env_num, n_sample=3200), eval=dict(env_num=evaluator_env_num, evaluator=dict(eval_freq=50, )), ), ) main_config = EasyDict(main_config) create_config = dict( env=dict( type='smac', import_names=['dizoo.smac.envs.smac_env'], ), env_manager=dict(type='base'), policy=dict(type='ppo'), ) create_config = EasyDict(create_config) if __name__ == '__main__': from ding.entry import serial_pipeline_onpolicy serial_pipeline_onpolicy((main_config, create_config), seed=0)