import os from typing import Union import gymnasium as gym import numpy as np from ding.envs import BaseEnvTimestep from ding.envs.common import save_frames_as_gif from ding.torch_utils import to_ndarray from ding.utils import ENV_REGISTRY from dizoo.mujoco.envs.mujoco_env import MujocoEnv @ENV_REGISTRY.register('mujoco_lightzero') class MujocoEnvLZ(MujocoEnv): """ Overview: The modified MuJoCo environment with continuous action space for LightZero's algorithms. """ config = dict( stop_value=int(1e6), action_clip=False, delay_reward_step=0, # replay_path (str or None): The path to save the replay video. If None, the replay will not be saved. # Only effective when env_manager.type is 'base'. replay_path=None, # (bool) If True, save the replay as a gif file. save_replay_gif=False, # (str or None) The path to save the replay gif. If None, the replay gif will not be saved. replay_path_gif=None, action_bins_per_branch=None, norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), ) def __init__(self, cfg: dict) -> None: """ Overview: Initialize the MuJoCo environment. Arguments: - cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc. """ super().__init__(cfg) self._cfg = cfg # We use env_name to indicate the env_id in LightZero. self._cfg.env_id = self._cfg.env_name self._action_clip = cfg.action_clip self._delay_reward_step = cfg.delay_reward_step self._init_flag = False self._replay_path = None self._replay_path_gif = cfg.replay_path_gif self._save_replay_gif = cfg.save_replay_gif self._action_bins_per_branch = cfg.action_bins_per_branch def reset(self) -> np.ndarray: """ Overview: Reset the environment and return the initial observation. Returns: - obs (:obj:`np.ndarray`): The initial observation after resetting. """ if not self._init_flag: self._env = self._make_env() if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) self._env.observation_space.dtype = np.float32 self._observation_space = self._env.observation_space self._action_space = self._env.action_space self._reward_space = gym.spaces.Box( low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 ) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) obs = self._env.reset() obs = to_ndarray(obs).astype('float32') self._eval_episode_return = 0. action_mask = None obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} return obs def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: """ Overview: Perform a step in the environment using the provided action, and return the next state of the environment. The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, done flag, and info dictionary. Arguments: - action (:obj:`Union[np.ndarray, list]`): The action to be performed in the environment. Returns: - timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, and info dictionary. .. note:: - The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. - If the episode ends (done is True), the total reward for the episode is stored in the info dictionary under the key 'eval_episode_return'. - An action mask is created with ones, which represents the availability of each action in the action space. - Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. """ if self._action_bins_per_branch: action = self.map_action(action) action = to_ndarray(action) if self._save_replay_gif: self._frames.append(self._env.render(mode='rgb_array')) if self._action_clip: action = np.clip(action, -1, 1) obs, rew, done, info = self._env.step(action) self._eval_episode_return += rew if done: if self._save_replay_gif: path = os.path.join( self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count) ) save_frames_as_gif(self._frames, path) self._save_replay_count += 1 info['eval_episode_return'] = self._eval_episode_return obs = to_ndarray(obs).astype(np.float32) rew = to_ndarray([rew]).astype(np.float32) action_mask = None obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} return BaseEnvTimestep(obs, rew, done, info) def __repr__(self) -> str: """ String representation of the environment. """ return "LightZero Mujoco Env({})".format(self._cfg.env_name)