import time import torch from hpc_rll.origin.td import dist_nstep_td_error, dist_nstep_td_data from hpc_rll.rl_utils.td import DistNStepTD from testbase import mean_relative_error, times assert torch.cuda.is_available() use_cuda = True T = 128 B = 128 N = 128 gamma = 0.95 v_min = -10.0 v_max = 10.0 n_atom = 51 def dntd_val(): ori_dist = torch.randn(B, N, n_atom).abs() ori_next_n_dist = torch.randn(B, N, n_atom).abs() ori_action = torch.randint(0, N, size=(B, )) ori_next_n_action = torch.randint(0, N, size=(B, )) ori_reward = torch.randn(T, B) ori_done = torch.randn(B) ori_weight = torch.randn(B) hpc_dist = ori_dist.clone().detach() hpc_next_n_dist = ori_next_n_dist.clone().detach() hpc_action = ori_action.clone().detach() hpc_next_n_action = ori_next_n_action.clone().detach() hpc_reward = ori_reward.clone().detach() hpc_done = ori_done.clone().detach() hpc_weight = ori_weight.clone().detach() hpc_dntd = DistNStepTD(T, B, N, n_atom) if use_cuda: ori_dist = ori_dist.cuda() ori_next_n_dist = ori_next_n_dist.cuda() ori_action = ori_action.cuda() ori_next_n_action = ori_next_n_action.cuda() ori_reward = ori_reward.cuda() ori_done = ori_done.cuda() ori_weight = ori_weight.cuda() hpc_dist = hpc_dist.cuda() hpc_next_n_dist = hpc_next_n_dist.cuda() hpc_action = hpc_action.cuda() hpc_next_n_action = hpc_next_n_action.cuda() hpc_reward = hpc_reward.cuda() hpc_done = hpc_done.cuda() hpc_weight = hpc_weight.cuda() hpc_dntd = hpc_dntd.cuda() ori_dist.requires_grad_(True) ori_loss, ori_td_err = dist_nstep_td_error( dist_nstep_td_data(ori_dist, ori_next_n_dist, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight), gamma, v_min, v_max, n_atom, T ) ori_loss = ori_loss.mean() ori_loss.backward() hpc_dist.requires_grad_(True) hpc_loss, hpc_td_err = hpc_dntd( hpc_dist, hpc_next_n_dist, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma, v_min, v_max ) hpc_loss = hpc_loss.mean() hpc_loss.backward() mre = mean_relative_error( torch.flatten(ori_loss).cpu().detach().numpy(), torch.flatten(hpc_loss).cpu().detach().numpy() ) print("dntd fp mean_relative_error: " + str(mre)) mre = mean_relative_error( torch.flatten(ori_td_err).cpu().detach().numpy(), torch.flatten(hpc_td_err).cpu().detach().numpy() ) print("dntd fp td_err mean_relative_error: " + str(mre)) mre = mean_relative_error( torch.flatten(ori_dist.grad).cpu().detach().numpy(), torch.flatten(hpc_dist.grad).cpu().detach().numpy() ) print("dntd bp mean_relative_error: " + str(mre)) def dntd_perf(): ori_dist = torch.randn(B, N, n_atom).abs() ori_next_n_dist = torch.randn(B, N, n_atom).abs() ori_action = torch.randint(0, N, size=(B, )) ori_next_n_action = torch.randint(0, N, size=(B, )) ori_reward = torch.randn(T, B) ori_done = torch.randn(B) ori_weight = torch.randn(B) hpc_dist = ori_dist.clone().detach() hpc_next_n_dist = ori_next_n_dist.clone().detach() hpc_action = ori_action.clone().detach() hpc_next_n_action = ori_next_n_action.clone().detach() hpc_reward = ori_reward.clone().detach() hpc_done = ori_done.clone().detach() hpc_weight = ori_weight.clone().detach() hpc_dntd = DistNStepTD(T, B, N, n_atom) if use_cuda: ori_dist = ori_dist.cuda() ori_next_n_dist = ori_next_n_dist.cuda() ori_action = ori_action.cuda() ori_next_n_action = ori_next_n_action.cuda() ori_reward = ori_reward.cuda() ori_done = ori_done.cuda() ori_weight = ori_weight.cuda() hpc_dist = hpc_dist.cuda() hpc_next_n_dist = hpc_next_n_dist.cuda() hpc_action = hpc_action.cuda() hpc_next_n_action = hpc_next_n_action.cuda() hpc_reward = hpc_reward.cuda() hpc_done = hpc_done.cuda() hpc_weight = hpc_weight.cuda() hpc_dntd = hpc_dntd.cuda() ori_dist.requires_grad_(True) for i in range(times): t = time.time() ori_loss, ori_td_err = dist_nstep_td_error( dist_nstep_td_data( ori_dist, ori_next_n_dist, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight ), gamma, v_min, v_max, n_atom, T ) ori_loss = ori_loss.mean() ori_loss.backward() if use_cuda: torch.cuda.synchronize() print('epoch: {}, origin dntd cost time: {}'.format(i, time.time() - t)) hpc_dist.requires_grad_(True) for i in range(times): t = time.time() hpc_loss, hpc_td_err = hpc_dntd( hpc_dist, hpc_next_n_dist, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma, v_min, v_max ) hpc_loss = hpc_loss.mean() hpc_loss.backward() if use_cuda: torch.cuda.synchronize() print('epoch: {}, hpc dntd cost time: {}'.format(i, time.time() - t)) if __name__ == '__main__': print( "target problem: T = {}, B = {}, N = {}, gamma = {}, v_min = {}, v_max = {}, n_atom = {}".format( T, B, N, gamma, v_min, v_max, n_atom ) ) print("================run dntd validation test================") dntd_val() print("================run dntd performance test================") dntd_perf()