""" The Node, Roots class and related core functions for Stochastic MuZero. """ import math import random from typing import List, Dict, Any, Tuple, Union import numpy as np import torch from .minimax import MinMaxStats class Node: """ Overview: the node base class for Stochastic MuZero. Arguments: """ def __init__(self, prior: float, legal_actions: List = None, action_space_size: int = 9, is_chance: bool = False, chance_space_size: int = 2) -> None: self.prior = prior self.legal_actions = legal_actions self.action_space_size = action_space_size self.visit_count = 0 self.value_sum = 0 self.best_action = -1 self.to_play = 0 # default 0 means play_with_bot_mode self.reward = 0 self.value_prefix = 0.0 self.children = {} self.children_index = [] self.latent_state_index_in_search_path = 0 self.latent_state_index_in_batch = 0 self.parent_value_prefix = 0 # only used in update_tree_q method self.is_chance = is_chance self.chance_space_size = chance_space_size def expand( self, to_play: int, latent_state_index_in_search_path: int, latent_state_index_in_batch: int, reward: float, policy_logits: List[float], child_is_chance: bool = True ) -> None: """ Overview: Expand the child nodes of the current node. Arguments: - to_play (:obj:`Class int`): which player to play the game in the current node. - latent_state_index_in_search_path (:obj:`Class int`): the x/first index of latent state vector of the current node, i.e. the search depth. - latent_state_index_in_batch (:obj:`Class int`): the y/second index of latent state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``. - value_prefix: (:obj:`Class float`): the value prefix of the current node. - policy_logits: (:obj:`Class List`): the policy logit of the child nodes. """ self.to_play = to_play self.reward = reward if self.is_chance is True: child_is_chance = False self.reward = 0.0 if self.legal_actions is None: self.legal_actions = np.arange(self.chance_space_size) self.latent_state_index_in_search_path = latent_state_index_in_search_path self.latent_state_index_in_batch = latent_state_index_in_batch policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist() policy = {legal_action: policy_values[index] for index, legal_action in enumerate(self.legal_actions)} for action, prior in policy.items(): self.children[action] = Node(prior, is_chance=child_is_chance) else: child_is_chance = True self.legal_actions = np.arange(len(policy_logits)) self.latent_state_index_in_search_path = latent_state_index_in_search_path self.latent_state_index_in_batch = latent_state_index_in_batch policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist() policy = {legal_action: policy_values[index] for index, legal_action in enumerate(self.legal_actions)} for action, prior in policy.items(): self.children[action] = Node(prior, is_chance=child_is_chance) def add_exploration_noise(self, exploration_fraction: float, noises: List[float]) -> None: """ Overview: add exploration noise to priors Arguments: - noises (:obj: list): length is len(self.legal_actions) """ for i, a in enumerate(self.legal_actions): """ i in index, a is action, e.g. self.legal_actions = [0,1,2,4,6,8], i=[0,1,2,3,4,5], a=[0,1,2,4,6,8] """ try: noise = noises[i] except Exception as error: print(error) child = self.get_child(a) prior = child.prior child.prior = prior * (1 - exploration_fraction) + noise * exploration_fraction def compute_mean_q(self, is_root: int, parent_q: float, discount_factor: float) -> float: """ Overview: Compute the mean q value of the current node. Arguments: - is_root (:obj:`int`): whether the current node is a root node. - parent_q (:obj:`float`): the q value of the parent node. - discount_factor (:obj:`float`): the discount_factor of reward. """ total_unsigned_q = 0.0 total_visits = 0 for a in self.legal_actions: child = self.get_child(a) if child.visit_count > 0: true_reward = child.reward # TODO(pu): only one step bootstrap? q_of_s_a = true_reward + discount_factor * child.value total_unsigned_q += q_of_s_a total_visits += 1 if is_root and total_visits > 0: mean_q = total_unsigned_q / total_visits else: # if is not root node, # TODO(pu): why parent_q? mean_q = (parent_q + total_unsigned_q) / (total_visits + 1) return mean_q def get_trajectory(self) -> List[Union[int, float]]: """ Overview: Find the current best trajectory starts from the current node. Outputs: - traj: a vector of node index, which is the current best trajectory from this node. """ # TODO(pu): best action traj = [] node = self best_action = node.best_action while best_action >= 0: traj.append(best_action) node = node.get_child(best_action) best_action = node.best_action return traj def get_children_distribution(self) -> List[Union[int, float]]: if self.legal_actions == []: return None distribution = {a: 0 for a in self.legal_actions} if self.expanded: for a in self.legal_actions: child = self.get_child(a) distribution[a] = child.visit_count # only take the visit counts distribution = [v for k, v in distribution.items()] return distribution def get_child(self, action: Union[int, float]) -> "Node": """ Overview: get children node according to the input action. """ if not isinstance(action, np.int64): action = int(action) return self.children[action] @property def expanded(self) -> bool: return len(self.children) > 0 @property def value(self) -> float: """ Overview: Return the estimated value of the current root node. """ if self.visit_count == 0: return 0 else: return self.value_sum / self.visit_count class Roots: def __init__(self, root_num: int, legal_actions_list: List) -> None: self.num = root_num self.root_num = root_num self.legal_actions_list = legal_actions_list # list of list self.roots = [] for i in range(self.root_num): if isinstance(legal_actions_list, list): self.roots.append(Node(0, legal_actions_list[i])) else: # if legal_actions_list is int self.roots.append(Node(0, np.arange(legal_actions_list))) def prepare( self, root_noise_weight: float, noises: List[float], rewards: List[float], policies: List[List[float]], to_play: int = -1 ) -> None: """ Overview: Expand the roots and add noises. Arguments: - root_noise_weight: the exploration fraction of roots - noises: the vector of noise add to the roots. - rewards: the vector of rewards of each root. - policies: the vector of policy logits of each root. - to_play_batch: the vector of the player side of each root. """ for i in range(self.root_num): # to_play: int, latent_state_index_in_search_path: int, latent_state_index_in_batch: int, if to_play is None: # TODO(pu): why latent_state_index_in_search_path=0, latent_state_index_in_batch=i? self.roots[i].expand(-1, 0, i, rewards[i], policies[i]) else: self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i]) self.roots[i].add_exploration_noise(root_noise_weight, noises[i]) self.roots[i].visit_count += 1 def prepare_no_noise(self, rewards: List[float], policies: List[List[float]], to_play: int = -1) -> None: """ Overview: Expand the roots without noise. Arguments: - rewards: the vector of rewards of each root. - policies: the vector of policy logits of each root. - to_play_batch: the vector of the player side of each root. """ for i in range(self.root_num): if to_play is None: self.roots[i].expand(-1, 0, i, rewards[i], policies[i]) else: self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i]) self.roots[i].visit_count += 1 def clear(self) -> None: self.roots.clear() def get_trajectories(self) -> List[List[Union[int, float]]]: """ Overview: Find the current best trajectory starts from each root. Outputs: - traj: a vector of node index, which is the current best trajectory from each root. """ trajs = [] for i in range(self.root_num): trajs.append(self.roots[i].get_trajectory()) return trajs def get_distributions(self) -> List[List[Union[int, float]]]: """ Overview: Get the children distribution of each root. Outputs: - distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]). """ distributions = [] for i in range(self.root_num): distributions.append(self.roots[i].get_children_distribution()) return distributions def get_values(self) -> float: """ Overview: Return the estimated value of each root. """ values = [] for i in range(self.root_num): values.append(self.roots[i].value) return values class SearchResults: def __init__(self, num: int) -> None: self.num = num self.nodes = [] self.search_paths = [] self.latent_state_index_in_search_path = [] self.latent_state_index_in_batch = [] self.last_actions = [] self.search_lens = [] def update_tree_q(root: Node, min_max_stats: MinMaxStats, discount_factor: float, players: int = 1) -> None: """ Overview: Update the value sum and visit count of nodes along the search path. Arguments: - search_path: a vector of nodes on the search path. - min_max_stats: a tool used to min-max normalize the q value. - to_play: which player to play the game in the current node. - value: the value to propagate along the search path. - discount_factor: the discount factor of reward. """ node_stack = [] node_stack.append(root) while len(node_stack) > 0: node = node_stack[-1] node_stack.pop() if node != root: true_reward = node.reward if players == 1: q_of_s_a = true_reward + discount_factor * node.value elif players == 2: q_of_s_a = true_reward + discount_factor * (-node.value) min_max_stats.update(q_of_s_a) for a in node.legal_actions: child = node.get_child(a) if child.expanded: node_stack.append(child) def select_child( node: Node, min_max_stats: MinMaxStats, pb_c_base: float, pb_c_int: float, discount_factor: float, mean_q: float, players: int ) -> Union[int, float]: """ Overview: Select the child node of the roots according to ucb scores. Arguments: - node: the node to select the child node. - min_max_stats (:obj:`Class MinMaxStats`): a tool used to min-max normalize the score. - pb_c_base (:obj:`Class Float`): constant c1 used in pUCT rule, typically 1.25. - pb_c_int (:obj:`Class Float`): constant c2 used in pUCT rule, typically 19652. - discount_factor (:obj:`Class Float`): discount_factor factor used i calculating bootstrapped value, if env is board_games, we set discount_factor=1. - mean_q (:obj:`Class Float`): the mean q value of the parent node. - players (:obj:`Class Int`): the number of players. one/two_player mode board games. Returns: - action (:obj:`Union[int, float]`): Choose the action with the highest ucb score. """ if node.is_chance: # print("root->is_chance: True ") # If the node is chance node, we sample from the prior outcome distribution. outcomes, probs = zip(*[(o, n.prior) for o, n in node.children.items()]) outcome = np.random.choice(outcomes, p=probs) # print(outcome, probs) return outcome # print("root->is_chance: False ") # If the node is decision node, we select the action with the highest ucb score. max_score = -np.inf epsilon = 0.000001 max_index_lst = [] for a in node.legal_actions: child = node.get_child(a) temp_score = compute_ucb_score( child, min_max_stats, mean_q, node.visit_count, pb_c_base, pb_c_int, discount_factor, players ) if max_score < temp_score: max_score = temp_score max_index_lst.clear() max_index_lst.append(a) elif temp_score >= max_score - epsilon: # TODO(pu): if the difference is less than epsilon = 0.000001, we random choice action from max_index_lst max_index_lst.append(a) action = 0 if len(max_index_lst) > 0: action = random.choice(max_index_lst) return action def compute_ucb_score( child: Node, min_max_stats: MinMaxStats, parent_mean_q: float, total_children_visit_counts: float, pb_c_base: float, pb_c_init: float, discount_factor: float, players: int = 1, ) -> float: """ Overview: Compute the ucb score of the child. Arguments: - child: the child node to compute ucb score. - min_max_stats: a tool used to min-max normalize the score. - parent_mean_q: the mean q value of the parent node. - is_reset: whether the value prefix needs to be reset. - total_children_visit_counts: the total visit counts of the child nodes of the parent node. - parent_value_prefix: the value prefix of parent node. - pb_c_base: constants c2 in muzero. - pb_c_init: constants c1 in muzero. - disount_factor: the discount factor of reward. - players: the number of players. - continuous_action_space: whether the action space is continous in current env. Outputs: - ucb_value: the ucb score of the child. """ pb_c = math.log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init pb_c *= (math.sqrt(total_children_visit_counts) / (child.visit_count + 1)) prior_score = pb_c * child.prior if child.visit_count == 0: value_score = parent_mean_q else: true_reward = child.reward if players == 1: value_score = true_reward + discount_factor * child.value elif players == 2: value_score = true_reward + discount_factor * (-child.value) value_score = min_max_stats.normalize(value_score) if value_score < 0: value_score = 0 if value_score > 1: value_score = 1 ucb_score = prior_score + value_score return ucb_score def batch_traverse( roots: Any, pb_c_base: float, pb_c_init: float, discount_factor: float, min_max_stats_lst: List[MinMaxStats], results: SearchResults, virtual_to_play: List, ) -> Tuple[Any, Any]: """ Overview: traverse, also called selection. process a batch roots parallely. Arguments: - roots (:obj:`Any`): a batch of root nodes to be expanded. - pb_c_base (:obj:`float`): constant c1 used in pUCT rule, typically 1.25. - pb_c_init (:obj:`float`): constant c2 used in pUCT rule, typically 19652. - discount_factor (:obj:`float`): discount_factor factor used i calculating bootstrapped value, if env is board_games, we set discount_factor=1. - virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and training in board games, `virtual` is to emphasize that actions are performed on an imaginary hidden state. - continuous_action_space: whether the action space is continous in current env. Returns: - latent_state_index_in_search_path (:obj:`list`): the list of x/first index of latent state vector of the searched node, i.e. the search depth. - latent_state_index_in_batch (:obj:`list`): the list of y/second index of latent state vector of the searched node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``. - last_actions (:obj:`list`): the action performed by the previous node. - virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and trainin gin board games, `virtual` is to emphasize that actions are performed on an imaginary hidden state. """ parent_q = 0.0 results.search_lens = [None for i in range(results.num)] results.last_actions = [None for i in range(results.num)] results.nodes = [None for i in range(results.num)] results.latent_state_index_in_search_path = [None for i in range(results.num)] results.latent_state_index_in_batch = [None for i in range(results.num)] if virtual_to_play in [1, 2] or virtual_to_play[0] in [1, 2]: players = 2 elif virtual_to_play in [-1, None] or virtual_to_play[0] in [-1, None]: players = 1 results.search_paths = {i: [] for i in range(results.num)} for i in range(results.num): node = roots.roots[i] is_root = 1 search_len = 0 results.search_paths[i].append(node) """ MCTS stage 1: Selection Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l. """ # the leaf node is not expanded while node.expanded: mean_q = node.compute_mean_q(is_root, parent_q, discount_factor) is_root = 0 parent_q = mean_q # select action according to the pUCT rule. action = select_child( node, min_max_stats_lst.stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players ) if players == 2: # Players play turn by turn if virtual_to_play[i] == 1: virtual_to_play[i] = 2 else: virtual_to_play[i] = 1 node.best_action = action # move to child node according to selected action. node = node.get_child(action) last_action = action results.search_paths[i].append(node) search_len += 1 # note this return the parent node of the current searched node parent = results.search_paths[i][len(results.search_paths[i]) - 1 - 1] results.latent_state_index_in_search_path[i] = parent.latent_state_index_in_search_path results.latent_state_index_in_batch[i] = parent.latent_state_index_in_batch results.last_actions[i] = last_action results.search_lens[i] = search_len # while we break out the while loop, results.nodes[i] save the leaf node. results.nodes[i] = node # print(f'env {i} one simulation done!') return results, virtual_to_play def backpropagate( search_path: List[Node], min_max_stats: MinMaxStats, to_play: int, value: float, discount_factor: float ) -> None: """ Overview: Update the value sum and visit count of nodes along the search path. Arguments: - search_path: a vector of nodes on the search path. - min_max_stats: a tool used to min-max normalize the q value. - to_play: which player to play the game in the current node. - value: the value to propagate along the search path. - discount_factor: the discount factor of reward. """ assert to_play is None or to_play in [-1, 1, 2] if to_play is None or to_play == -1: # for play-with-bot mode bootstrap_value = value path_len = len(search_path) for i in range(path_len - 1, -1, -1): node = search_path[i] node.value_sum += bootstrap_value node.visit_count += 1 true_reward = node.reward min_max_stats.update(true_reward + discount_factor * node.value) bootstrap_value = true_reward + discount_factor * bootstrap_value else: # for self-play-mode bootstrap_value = value path_len = len(search_path) for i in range(path_len - 1, -1, -1): node = search_path[i] # to_play related node.value_sum += bootstrap_value if node.to_play == to_play else -bootstrap_value node.visit_count += 1 # NOTE: in self-play-mode, # we should calculate the true_reward according to the perspective of current player of node # true_reward = node.value_prefix - (- parent_value_prefix) true_reward = node.reward # min_max_stats.update(true_reward + discount_factor * node.value) min_max_stats.update(true_reward + discount_factor * -node.value) # TODO(pu): to_play related # true_reward is in the perspective of current player of node bootstrap_value = (-true_reward if node.to_play == to_play else true_reward) + discount_factor * bootstrap_value def batch_backpropagate( latent_state_index_in_search_path: int, discount_factor: float, value_prefixs: List[float], values: List[float], policies: List[float], min_max_stats_lst: List[MinMaxStats], results: SearchResults, to_play: list = None, is_chance_list: list = None, leaf_idx_list: list = None, ) -> None: """ Overview: Backpropagation along the search path to update the attributes. Arguments: - latent_state_index_in_search_path (:obj:`Class Int`): the index of latent state vector. - discount_factor (:obj:`Class Float`): discount_factor factor used i calculating bootstrapped value, if env is board_games, we set discount_factor=1. - value_prefixs (:obj:`Class List`): the value prefixs of nodes along the search path. - values (:obj:`Class List`): the values to propagate along the search path. - policies (:obj:`Class List`): the policy logits of nodes along the search path. - min_max_stats_lst (:obj:`Class List[MinMaxStats]`): a tool used to min-max normalize the q value. - results (:obj:`Class List`): the search results. - to_play (:obj:`Class List`): the batch of which player is playing on this node. """ if leaf_idx_list is None: leaf_idx_list = list(range(results.num)) for leaf_order, i in enumerate(leaf_idx_list): # ****** expand the leaf node ****** if to_play is None: # set to_play=-1, because two_player mode to_play = {1,2} results.nodes[i].expand(-1, latent_state_index_in_search_path, i, value_prefixs[leaf_order], policies[leaf_order], is_chance_list[i]) else: results.nodes[i].expand(to_play[i], latent_state_index_in_search_path, i, value_prefixs[leaf_order], policies[leaf_order], is_chance_list[i]) # ****** backpropagate ****** if to_play is None: backpropagate(results.search_paths[i], min_max_stats_lst.stats_lst[i], 0, values[leaf_order], discount_factor) else: backpropagate( results.search_paths[i], min_max_stats_lst.stats_lst[i], to_play[i], values[leaf_order], discount_factor )