import time from collections import deque, namedtuple from typing import Optional, Any, List import numpy as np import torch from ding.envs import BaseEnvManager from ding.torch_utils import to_ndarray from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, one_time_warning, get_rank, get_world_size, \ broadcast_object_list, allreduce_data from ding.worker.collector.base_serial_collector import ISerialCollector from torch.nn import L1Loss from lzero.mcts.buffer.game_segment import GameSegment from lzero.mcts.utils import prepare_observation @SERIAL_COLLECTOR_REGISTRY.register('episode_muzero') class MuZeroCollector(ISerialCollector): """ Overview: The Collector for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero, Gumbel MuZero. Interfaces: __init__, reset, reset_env, reset_policy, _reset_stat, envstep, __del__, _compute_priorities, pad_and_save_last_trajectory, collect, _output_log, close Property: envstep """ # TO be compatible with ISerialCollector config = dict() def __init__( self, collect_print_freq: int = 100, env: BaseEnvManager = None, policy: namedtuple = None, tb_logger: 'SummaryWriter' = None, # noqa exp_name: Optional[str] = 'default_experiment', instance_name: Optional[str] = 'collector', policy_config: 'policy_config' = None, # noqa ) -> None: """ Overview: Init the collector according to input arguments. Arguments: - collect_print_freq (:obj:`int`): collect_print_frequency in terms of training_steps. - env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager) - policy (:obj:`namedtuple`): the api namedtuple of collect_mode policy - tb_logger (:obj:`SummaryWriter`): tensorboard handle - instance_name (:obj:`Optional[str]`): Name of this instance. - exp_name (:obj:`str`): Experiment name, which is used to indicate output directory. - policy_config: Config of game. """ self._exp_name = exp_name self._instance_name = instance_name self._collect_print_freq = collect_print_freq self._timer = EasyTimer() self._end_flag = False self._rank = get_rank() self._world_size = get_world_size() if self._rank == 0: if tb_logger is not None: self._logger, _ = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False ) self._tb_logger = tb_logger else: self._logger, self._tb_logger = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name ) else: self._logger, _ = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False ) self._tb_logger = None self.policy_config = policy_config self.reset(policy, env) def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. Arguments: - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self._env = _env self._env.launch() self._env_num = self._env.env_num else: self._env.reset() def reset_policy(self, _policy: Optional[namedtuple] = None) -> None: """ Overview: Reset the policy. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy """ assert hasattr(self, '_env'), "please set env first" if _policy is not None: self._policy = _policy self._default_n_episode = _policy.get_attribute('cfg').get('n_episode', None) self._logger.debug( 'Set default n_episode mode(n_episode({}), env_num({}))'.format(self._default_n_episode, self._env_num) ) self._policy.reset() def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment and policy. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self.reset_env(_env) if _policy is not None: self.reset_policy(_policy) self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} self._episode_info = [] self._total_envstep_count = 0 self._total_episode_count = 0 self._total_duration = 0 self._last_train_iter = 0 self._end_flag = False # A game_segment_pool implementation based on the deque structure. self.game_segment_pool = deque(maxlen=int(1e6)) self.unroll_plus_td_steps = self.policy_config.num_unroll_steps + self.policy_config.td_steps def _reset_stat(self, env_id: int) -> None: """ Overview: Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\ and env_info. Reset these states according to env_id. You can refer to base_serial_collector\ to get more messages. Arguments: - env_id (:obj:`int`): the id where we need to reset the collector's state """ self._env_info[env_id] = {'time': 0., 'step': 0} @property def envstep(self) -> int: """ Overview: Print the total envstep count. Return: - envstep (:obj:`int`): the total envstep count """ return self._total_envstep_count def close(self) -> None: """ Overview: Close the collector. If end_flag is False, close the environment, flush the tb_logger\ and close the tb_logger. """ if self._end_flag: return self._end_flag = True self._env.close() if self._tb_logger: self._tb_logger.flush() self._tb_logger.close() def __del__(self) -> None: """ Overview: Execute the close command and close the collector. __del__ is automatically called to \ destroy the collector instance when the collector finishes its work """ self.close() # ============================================================== # MCTS+RL related core code # ============================================================== def _compute_priorities(self, i, pred_values_lst, search_values_lst): """ Overview: obtain the priorities at index i. Arguments: - i: index. - pred_values_lst: The list of value being predicted. - search_values_lst: The list of value obtained through search. """ if self.policy_config.use_priority: # Calculate priorities. The priorities are the L1 losses between the predicted # values and the search values. We use 'none' as the reduction parameter, which # means the loss is calculated for each element individually, instead of being summed or averaged. # A small constant (1e-6) is added to the results to avoid zero priorities. This # is done because zero priorities could potentially cause issues in some scenarios. pred_values = torch.from_numpy(np.array(pred_values_lst[i])).to(self.policy_config.device).float().view(-1) search_values = torch.from_numpy(np.array(search_values_lst[i])).to(self.policy_config.device ).float().view(-1) priorities = L1Loss(reduction='none' )(pred_values, search_values).detach().cpu().numpy() + 1e-6 else: # priorities is None -> use the max priority for all newly collected data priorities = None return priorities def pad_and_save_last_trajectory(self, i, last_game_segments, last_game_priorities, game_segments, done) -> None: """ Overview: put the last game segment into the pool if the current game is finished Arguments: - last_game_segments (:obj:`list`): list of the last game segments - last_game_priorities (:obj:`list`): list of the last game priorities - game_segments (:obj:`list`): list of the current game segments Note: (last_game_segments[i].obs_segment[-4:][j] == game_segments[i].obs_segment[:4][j]).all() is True """ # pad over last segment trajectory beg_index = self.policy_config.model.frame_stack_num end_index = beg_index + self.policy_config.num_unroll_steps # the start obs is init zero obs, so we take the [ : +] obs as the pad obs # e.g. the start 4 obs is init zero obs, the num_unroll_steps is 5, so we take the [4:9] obs as the pad obs pad_obs_lst = game_segments[i].obs_segment[beg_index:end_index] pad_child_visits_lst = game_segments[i].child_visit_segment[:self.policy_config.num_unroll_steps] # EfficientZero original repo bug: # pad_child_visits_lst = game_segments[i].child_visit_segment[beg_index:end_index] beg_index = 0 # self.unroll_plus_td_steps = self.policy_config.num_unroll_steps + self.policy_config.td_steps end_index = beg_index + self.unroll_plus_td_steps - 1 pad_reward_lst = game_segments[i].reward_segment[beg_index:end_index] if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_lst = game_segments[i].chance_segment[beg_index:end_index] beg_index = 0 end_index = beg_index + self.unroll_plus_td_steps pad_root_values_lst = game_segments[i].root_value_segment[beg_index:end_index] if self.policy_config.gumbel_algo: pad_improved_policy_prob = game_segments[i].improved_policy_probs[beg_index:end_index] # pad over and save if self.policy_config.gumbel_algo: last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst, next_segment_improved_policy = pad_improved_policy_prob) else: if self.policy_config.use_ture_chance_label_in_chance_encoder: last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst, next_chances = chance_lst) else: last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst) """ Note: game_segment element shape: obs: game_segment_length + stack + num_unroll_steps, 20+4 +5 rew: game_segment_length + stack + num_unroll_steps + td_steps -1 20 +5+3-1 action: game_segment_length -> 20 root_values: game_segment_length + num_unroll_steps + td_steps -> 20 +5+3 child_visits: game_segment_length + num_unroll_steps -> 20 +5 to_play: game_segment_length -> 20 action_mask: game_segment_length -> 20 """ last_game_segments[i].game_segment_to_array() # put the game segment into the pool self.game_segment_pool.append((last_game_segments[i], last_game_priorities[i], done[i])) # reset last game_segments last_game_segments[i] = None last_game_priorities[i] = None return None def collect(self, n_episode: Optional[int] = None, train_iter: int = 0, policy_kwargs: Optional[dict] = None) -> List[Any]: """ Overview: Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations. Arguments: - n_episode (:obj:`int`): the number of collecting data episode. - train_iter (:obj:`int`): the number of training iteration. - policy_kwargs (:obj:`dict`): the keyword args for policy forward. Returns: - return_data (:obj:`List`): A list containing collected game_segments """ if n_episode is None: if self._default_n_episode is None: raise RuntimeError("Please specify collect n_episode") else: n_episode = self._default_n_episode assert n_episode >= self._env_num, "Please make sure n_episode >= env_num{}/{}".format(n_episode, self._env_num) if policy_kwargs is None: policy_kwargs = {} temperature = policy_kwargs['temperature'] epsilon = policy_kwargs['epsilon'] collected_episode = 0 collected_step = 0 env_nums = self._env_num # initializations init_obs = self._env.ready_obs retry_waiting_time = 0.001 while len(init_obs.keys()) != self._env_num: # In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to # len(self._env.ready_obs), especially in tictactoe env. self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys())) self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states)) time.sleep(retry_waiting_time) self._logger.info('=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10) self._logger.info( 'After sleeping {}s, the current _env_states is {}'.format(retry_waiting_time, self._env._env_states) ) init_obs = self._env.ready_obs action_mask_dict = {i: to_ndarray(init_obs[i]['action_mask']) for i in range(env_nums)} to_play_dict = {i: to_ndarray(init_obs[i]['to_play']) for i in range(env_nums)} if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict = {i: to_ndarray(init_obs[i]['chance']) for i in range(env_nums)} game_segments = [ GameSegment( self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config ) for _ in range(env_nums) ] # stacked observation windows in reset stage for init game_segments observation_window_stack = [[] for _ in range(env_nums)] for env_id in range(env_nums): observation_window_stack[env_id] = deque( [to_ndarray(init_obs[env_id]['observation']) for _ in range(self.policy_config.model.frame_stack_num)], maxlen=self.policy_config.model.frame_stack_num ) game_segments[env_id].reset(observation_window_stack[env_id]) dones = np.array([False for _ in range(env_nums)]) last_game_segments = [None for _ in range(env_nums)] last_game_priorities = [None for _ in range(env_nums)] # for priorities in self-play search_values_lst = [[] for _ in range(env_nums)] pred_values_lst = [[] for _ in range(env_nums)] if self.policy_config.gumbel_algo: improved_policy_lst = [[] for _ in range(env_nums)] # some logs eps_steps_lst, visit_entropies_lst = np.zeros(env_nums), np.zeros(env_nums) if self.policy_config.gumbel_algo: completed_value_lst = np.zeros(env_nums) self_play_moves = 0. self_play_episodes = 0. self_play_moves_max = 0 self_play_visit_entropy = [] total_transitions = 0 ready_env_id = set() remain_episode = n_episode while True: with self._timer: # Get current ready env obs. obs = self._env.ready_obs new_available_env_id = set(obs.keys()).difference(ready_env_id) ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) remain_episode -= min(len(new_available_env_id), remain_episode) stack_obs = {env_id: game_segments[env_id].get_obs() for env_id in ready_env_id} stack_obs = list(stack_obs.values()) action_mask_dict = {env_id: action_mask_dict[env_id] for env_id in ready_env_id} to_play_dict = {env_id: to_play_dict[env_id] for env_id in ready_env_id} action_mask = [action_mask_dict[env_id] for env_id in ready_env_id] to_play = [to_play_dict[env_id] for env_id in ready_env_id] if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict = {env_id: chance_dict[env_id] for env_id in ready_env_id} chance = [chance_dict[env_id] for env_id in ready_env_id] stack_obs = to_ndarray(stack_obs) stack_obs = prepare_observation(stack_obs, self.policy_config.model.model_type) stack_obs = torch.from_numpy(stack_obs).to(self.policy_config.device).float() # ============================================================== # policy forward # ============================================================== policy_output = self._policy.forward(stack_obs, action_mask, temperature, to_play, epsilon) actions_no_env_id = {k: v['action'] for k, v in policy_output.items()} distributions_dict_no_env_id = {k: v['visit_count_distributions'] for k, v in policy_output.items()} if self.policy_config.sampled_algo: root_sampled_actions_dict_no_env_id = { k: v['root_sampled_actions'] for k, v in policy_output.items() } value_dict_no_env_id = {k: v['searched_value'] for k, v in policy_output.items()} pred_value_dict_no_env_id = {k: v['predicted_value'] for k, v in policy_output.items()} visit_entropy_dict_no_env_id = { k: v['visit_count_distribution_entropy'] for k, v in policy_output.items() } if self.policy_config.gumbel_algo: improved_policy_dict_no_env_id = {k: v['improved_policy_probs'] for k, v in policy_output.items()} completed_value_no_env_id = { k: v['roots_completed_value'] for k, v in policy_output.items() } # TODO(pu): subprocess actions = {} distributions_dict = {} if self.policy_config.sampled_algo: root_sampled_actions_dict = {} value_dict = {} pred_value_dict = {} visit_entropy_dict = {} if self.policy_config.gumbel_algo: improved_policy_dict = {} completed_value_dict = {} for index, env_id in enumerate(ready_env_id): actions[env_id] = actions_no_env_id.pop(index) distributions_dict[env_id] = distributions_dict_no_env_id.pop(index) if self.policy_config.sampled_algo: root_sampled_actions_dict[env_id] = root_sampled_actions_dict_no_env_id.pop(index) value_dict[env_id] = value_dict_no_env_id.pop(index) pred_value_dict[env_id] = pred_value_dict_no_env_id.pop(index) visit_entropy_dict[env_id] = visit_entropy_dict_no_env_id.pop(index) if self.policy_config.gumbel_algo: improved_policy_dict[env_id] = improved_policy_dict_no_env_id.pop(index) completed_value_dict[env_id] = completed_value_no_env_id.pop(index) # ============================================================== # Interact with env. # ============================================================== timesteps = self._env.step(actions) interaction_duration = self._timer.value / len(timesteps) for env_id, timestep in timesteps.items(): with self._timer: if timestep.info.get('abnormal', False): # If there is an abnormal timestep, reset all the related variables(including this env). # suppose there is no reset param, just reset this env self._env.reset({env_id: None}) self._policy.reset([env_id]) self._reset_stat(env_id) self._logger.info('Env{} returns a abnormal step, its info is {}'.format(env_id, timestep.info)) continue obs, reward, done, info = timestep.obs, timestep.reward, timestep.done, timestep.info if self.policy_config.sampled_algo: game_segments[env_id].store_search_stats( distributions_dict[env_id], value_dict[env_id], root_sampled_actions_dict[env_id] ) elif self.policy_config.gumbel_algo: game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id], improved_policy = improved_policy_dict[env_id]) else: game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id]) # append a transition tuple, including a_t, o_{t+1}, r_{t}, action_mask_{t}, to_play_{t} # in ``game_segments[env_id].init``, we have append o_{t} in ``self.obs_segment`` if self.policy_config.use_ture_chance_label_in_chance_encoder: game_segments[env_id].append( actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id], to_play_dict[env_id], chance_dict[env_id] ) else: game_segments[env_id].append( actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id], to_play_dict[env_id] ) # NOTE: the position of code snippet is very important. # the obs['action_mask'] and obs['to_play'] are corresponding to the next action action_mask_dict[env_id] = to_ndarray(obs['action_mask']) to_play_dict[env_id] = to_ndarray(obs['to_play']) if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict[env_id] = to_ndarray(obs['chance']) if self.policy_config.ignore_done: dones[env_id] = False else: dones[env_id] = done visit_entropies_lst[env_id] += visit_entropy_dict[env_id] if self.policy_config.gumbel_algo: completed_value_lst[env_id] += np.mean(np.array(completed_value_dict[env_id])) eps_steps_lst[env_id] += 1 total_transitions += 1 if self.policy_config.use_priority: pred_values_lst[env_id].append(pred_value_dict[env_id]) search_values_lst[env_id].append(value_dict[env_id]) if self.policy_config.gumbel_algo: improved_policy_lst[env_id].append(improved_policy_dict[env_id]) # append the newest obs observation_window_stack[env_id].append(to_ndarray(obs['observation'])) # ============================================================== # we will save a game segment if it is the end of the game or the next game segment is finished. # ============================================================== # if game segment is full, we will save the last game segment if game_segments[env_id].is_full(): # pad over last segment trajectory if last_game_segments[env_id] is not None: # TODO(pu): return the one game segment self.pad_and_save_last_trajectory( env_id, last_game_segments, last_game_priorities, game_segments, dones ) # calculate priority priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst) pred_values_lst[env_id] = [] search_values_lst[env_id] = [] if self.policy_config.gumbel_algo: improved_policy_lst[env_id] = [] # the current game_segments become last_game_segment last_game_segments[env_id] = game_segments[env_id] last_game_priorities[env_id] = priorities # create new GameSegment game_segments[env_id] = GameSegment( self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config ) game_segments[env_id].reset(observation_window_stack[env_id]) self._env_info[env_id]['step'] += 1 collected_step += 1 self._env_info[env_id]['time'] += self._timer.value + interaction_duration if timestep.done: self._total_episode_count += 1 reward = timestep.info['eval_episode_return'] info = { 'reward': reward, 'time': self._env_info[env_id]['time'], 'step': self._env_info[env_id]['step'], 'visit_entropy': visit_entropies_lst[env_id] / eps_steps_lst[env_id], } if self.policy_config.gumbel_algo: info['completed_value'] = completed_value_lst[env_id] / eps_steps_lst[env_id] collected_episode += 1 self._episode_info.append(info) # ============================================================== # if it is the end of the game, we will save the game segment # ============================================================== # NOTE: put the penultimate game segment in one episode into the trajectory_pool # pad over 2th last game_segment using the last game_segment if last_game_segments[env_id] is not None: self.pad_and_save_last_trajectory( env_id, last_game_segments, last_game_priorities, game_segments, dones ) # store current segment trajectory priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst) # NOTE: put the last game segment in one episode into the trajectory_pool game_segments[env_id].game_segment_to_array() # assert len(game_segments[env_id]) == len(priorities) # NOTE: save the last game segment in one episode into the trajectory_pool if it's not null if len(game_segments[env_id].reward_segment) != 0: self.game_segment_pool.append((game_segments[env_id], priorities, dones[env_id])) # print(game_segments[env_id].reward_segment) # reset the finished env and init game_segments if n_episode > self._env_num: # Get current ready env obs. init_obs = self._env.ready_obs retry_waiting_time = 0.001 while len(init_obs.keys()) != self._env_num: # In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to # len(self._env.ready_obs), especially in tictactoe env. self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys())) self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states)) time.sleep(retry_waiting_time) self._logger.info( '=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10 ) self._logger.info( 'After sleeping {}s, the current _env_states is {}'.format( retry_waiting_time, self._env._env_states ) ) init_obs = self._env.ready_obs new_available_env_id = set(init_obs.keys()).difference(ready_env_id) ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) remain_episode -= min(len(new_available_env_id), remain_episode) action_mask_dict[env_id] = to_ndarray(init_obs[env_id]['action_mask']) to_play_dict[env_id] = to_ndarray(init_obs[env_id]['to_play']) if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict[env_id] = to_ndarray(init_obs[env_id]['chance']) game_segments[env_id] = GameSegment( self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config ) observation_window_stack[env_id] = deque( [init_obs[env_id]['observation'] for _ in range(self.policy_config.model.frame_stack_num)], maxlen=self.policy_config.model.frame_stack_num ) game_segments[env_id].reset(observation_window_stack[env_id]) last_game_segments[env_id] = None last_game_priorities[env_id] = None # log self_play_moves_max = max(self_play_moves_max, eps_steps_lst[env_id]) self_play_visit_entropy.append(visit_entropies_lst[env_id] / eps_steps_lst[env_id]) self_play_moves += eps_steps_lst[env_id] self_play_episodes += 1 pred_values_lst[env_id] = [] search_values_lst[env_id] = [] eps_steps_lst[env_id] = 0 visit_entropies_lst[env_id] = 0 # Env reset is done by env_manager automatically self._policy.reset([env_id]) self._reset_stat(env_id) # TODO(pu): subprocess mode, when n_episode > self._env_num, occasionally the ready_env_id=() # and the stack_obs is np.array(None, dtype=object) ready_env_id.remove(env_id) if collected_episode >= n_episode: # [data, meta_data] return_data = [self.game_segment_pool[i][0] for i in range(len(self.game_segment_pool))], [ { 'priorities': self.game_segment_pool[i][1], 'done': self.game_segment_pool[i][2], 'unroll_plus_td_steps': self.unroll_plus_td_steps } for i in range(len(self.game_segment_pool)) ] self.game_segment_pool.clear() # for i in range(len(self.game_segment_pool)): # print(self.game_segment_pool[i][0].obs_segment.__len__()) # print(self.game_segment_pool[i][0].reward_segment) # for i in range(len(return_data[0])): # print(return_data[0][i].reward_segment) break collected_duration = sum([d['time'] for d in self._episode_info]) # reduce data when enables DDP if self._world_size > 1: collected_step = allreduce_data(collected_step, 'sum') collected_episode = allreduce_data(collected_episode, 'sum') collected_duration = allreduce_data(collected_duration, 'sum') self._total_envstep_count += collected_step self._total_episode_count += collected_episode self._total_duration += collected_duration # log self._output_log(train_iter) return return_data def _output_log(self, train_iter: int) -> None: """ Overview: Print the output log information. You can refer to Docs/Best Practice/How to understand\ training generated folders/Serial mode/log/collector for more details. Arguments: - train_iter (:obj:`int`): the number of training iteration. """ if self._rank != 0: return if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: self._last_train_iter = train_iter episode_count = len(self._episode_info) envstep_count = sum([d['step'] for d in self._episode_info]) duration = sum([d['time'] for d in self._episode_info]) episode_reward = [d['reward'] for d in self._episode_info] visit_entropy = [d['visit_entropy'] for d in self._episode_info] if self.policy_config.gumbel_algo: completed_value = [d['completed_value'] for d in self._episode_info] self._total_duration += duration info = { 'episode_count': episode_count, 'envstep_count': envstep_count, 'avg_envstep_per_episode': envstep_count / episode_count, 'avg_envstep_per_sec': envstep_count / duration, 'avg_episode_per_sec': episode_count / duration, 'collect_time': duration, 'reward_mean': np.mean(episode_reward), 'reward_std': np.std(episode_reward), 'reward_max': np.max(episode_reward), 'reward_min': np.min(episode_reward), 'total_envstep_count': self._total_envstep_count, 'total_episode_count': self._total_episode_count, 'total_duration': self._total_duration, 'visit_entropy': np.mean(visit_entropy), # 'each_reward': episode_reward, } if self.policy_config.gumbel_algo: info['completed_value'] = np.mean(completed_value) self._episode_info.clear() self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()]))) for k, v in info.items(): if k in ['each_reward']: continue self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter) if k in ['total_envstep_count']: continue self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count)