# According to the model you want to evaluate, import the corresponding config. import numpy as np from lzero.entry import eval_muzero from zoo.game_2048.config.muzero_2048_config import main_config, create_config from zoo.game_2048.config.stochastic_muzero_2048_config import main_config, create_config if __name__ == "__main__": """ Entry point for the evaluation of the muzero or stochastic_muzero model on the 2048 environment. Variables: - model_path (:obj:`Optional[str]`): The pretrained model path, which should point to the ckpt file of the pretrained model. An absolute path is recommended. In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. - returns_mean_seeds (:obj:`List[float]`): List to store the mean returns for each seed. - returns_seeds (:obj:`List[float]`): List to store the returns for each seed. - seeds (:obj:`List[int]`): List of seeds for the environment. - num_episodes_each_seed (:obj:`int`): Number of episodes to run for each seed. - total_test_episodes (:obj:`int`): Total number of test episodes, computed as the product of the number of seeds and the number of episodes per seed. """ # model_path = './ckpt/ckpt_best.pth.tar' model_path = None returns_mean_seeds = [] returns_seeds = [] seeds = [0] num_episodes_each_seed = 1 # main_config.env.render_mode = 'image_realtime_mode' main_config.env.render_mode = 'image_savefile_mode' main_config.env.replay_path = './video' main_config.env.replay_format = 'gif' main_config.env.replay_name_suffix = 'muzero_ns100_s0' # main_config.env.replay_name_suffix = 'stochastic_muzero_ns100_s0' main_config.env.max_episode_steps = int(1e9) # Adjust according to different environments total_test_episodes = num_episodes_each_seed * len(seeds) create_config.env_manager.type = 'base' # Visualization requires the 'type' to be set as base main_config.env.evaluator_env_num = 1 # Visualization requires the 'env_num' to be set as 1 main_config.env.n_evaluator_episode = total_test_episodes for seed in seeds: returns_mean, returns = eval_muzero( [main_config, create_config], seed=seed, num_episodes_each_seed=num_episodes_each_seed, print_seed_details=False, model_path=model_path ) print(returns_mean, returns) returns_mean_seeds.append(returns_mean) returns_seeds.append(returns) returns_mean_seeds = np.array(returns_mean_seeds) returns_seeds = np.array(returns_seeds) print("=" * 20) print(f'We eval total {len(seeds)} seeds. In each seed, we eval {num_episodes_each_seed} episodes.') print(f'In seeds {seeds}, returns_mean_seeds is {returns_mean_seeds}, returns is {returns_seeds}') print('In all seeds, reward_mean:', returns_mean_seeds.mean()) print("=" * 20)