apiVersion: diengine.opendilab.org/v1alpha1 kind: DIJob metadata: name: cartpole-dqn labels: run-dijob-type: test spec: group: xxx priorityClassName: "" cleanPodPolicy: "Running" volumes: - name: cache-volume emptyDir: medium: Memory sizeLimit: 128Mi - name: work-dir hostPath: path: /data/di-engine coordinator: template: spec: containers: - name: di-container image: diorchestrator/ding:v0.1.1 imagePullPolicy: IfNotPresent env: - name: PYTHONUNBUFFERED value: "1" command: ["/bin/bash", "-c",] args: - | cat < cartpole_dqn_config_k8s.py from easydict import EasyDict cartpole_dqn_config = dict( exp_name='cartpole_dqn', env=dict( collector_env_num=8, collector_episode_num=2, evaluator_env_num=5, evaluator_episode_num=1, stop_value=195, ), policy=dict( cuda=False, model=dict( obs_shape=4, action_shape=2, encoder_hidden_size_list=[128, 128, 64], dueling=True, ), nstep=3, discount_factor=0.97, learn=dict( batch_size=32, learning_rate=0.001, learner=dict( learner_num=1, send_policy_freq=1, ), ), collect=dict( n_sample=16, collector=dict( collector_num=2, update_policy_second=3, ), ), eval=dict(evaluator=dict(eval_freq=50, )), other=dict( eps=dict( type='exp', start=0.95, end=0.1, decay=100000, ), replay_buffer=dict( replay_buffer_size=100000, enable_track_used_data=False, ), commander=dict( collector_task_space=2, learner_task_space=1, eval_interval=5, ), ), ), ) cartpole_dqn_config = EasyDict(cartpole_dqn_config) main_config = cartpole_dqn_config cartpole_dqn_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='dqn_command'), learner=dict(type='base', import_names=['ding.worker.learner.base_learner']), collector=dict( type='zergling', import_names=['ding.worker.collector.zergling_parallel_collector'], ), commander=dict( type='solo', import_names=['ding.worker.coordinator.solo_parallel_commander'], ), comm_learner=dict( type='flask_fs', import_names=['ding.worker.learner.comm.flask_fs_learner'], ), comm_collector=dict( type='flask_fs', import_names=['ding.worker.collector.comm.flask_fs_collector'], ), ) cartpole_dqn_create_config = EasyDict(cartpole_dqn_create_config) create_config = cartpole_dqn_create_config cartpole_dqn_system_config = dict( coordinator=dict( operator_server=dict( system_addr='di-server.di-system:8080', api_version='/v1alpha1', init_replicas_request=dict( collectors={ "replicas": 2, }, learners={ "gpus": "0", "replicas": 1, }, ), collector_target_num=2, learner_target_num=1, ), ), path_data='./{}/data'.format(main_config.exp_name), path_policy='./{}/policy'.format(main_config.exp_name), communication_mode='auto', learner_gpu_num=1, ) cartpole_dqn_system_config = EasyDict(cartpole_dqn_system_config) system_config = cartpole_dqn_system_config if __name__ == '__main__': from ding.entry.parallel_entry import parallel_pipeline parallel_pipeline([main_config, create_config, system_config], seed=9) EOF ding -m dist --module config -P k8s -c ./cartpole_dqn_config_k8s.py -s 0; ding -m dist --module coordinator -c /ding/cartpole_dqn_config_k8s.py.pkl -s 0 -cdp $COORDINATOR_PORT ports: - name: di-port containerPort: 22270 volumeMounts: - name: work-dir mountPath: /ding collector: template: spec: containers: - name: di-container image: diorchestrator/ding:v0.1.1 imagePullPolicy: IfNotPresent env: - name: PYTHONUNBUFFERED value: "1" command: ["/bin/bash", "-c",] args: - | ding -m dist --module collector -c /ding/cartpole_dqn_config_k8s.py.pkl -s 0 -clp $COLLECTOR_PORT ports: - name: di-port containerPort: 22270 volumeMounts: - name: work-dir mountPath: /ding learner: template: spec: containers: - name: di-container image: diorchestrator/ding:v0.1.1 imagePullPolicy: IfNotPresent env: - name: PYTHONUNBUFFERED value: "1" command: ["/bin/bash", "-c",] args: - | ding -m dist --module spawn_learner -c /ding/cartpole_dqn_config_k8s.py.pkl -s 0 -lp $LEARNER_PORT ports: - name: di-port containerPort: 22270 volumeMounts: - name: cache-volume mountPath: /dev/shm - name: work-dir mountPath: /ding