from easydict import EasyDict # options={'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ...} env_name = 'PongNoFrameskip-v4' if env_name == 'PongNoFrameskip-v4': action_space_size = 6 elif env_name == 'QbertNoFrameskip-v4': action_space_size = 6 elif env_name == 'MsPacmanNoFrameskip-v4': action_space_size = 9 elif env_name == 'SpaceInvadersNoFrameskip-v4': action_space_size = 6 elif env_name == 'BreakoutNoFrameskip-v4': action_space_size = 4 # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 50 update_per_collect = 1000 batch_size = 256 max_env_step = int(1e6) reanalyze_ratio = 0. eps_greedy_exploration_in_collect = False # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== atari_muzero_config = dict( exp_name= f'data_mz_ctree/{env_name[:-14]}_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', env=dict( stop_value=int(1e6), env_name=env_name, obs_shape=(4, 96, 96), collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=(4, 96, 96), frame_stack_num=4, action_space_size=action_space_size, downsample=True, self_supervised_learning_loss=True, # default is False discrete_action_encoding_type='one_hot', norm_type='BN', ), cuda=True, env_type='not_board_games', game_segment_length=400, random_collect_episode_num=0, eps=dict( eps_greedy_exploration_in_collect=eps_greedy_exploration_in_collect, # need to dynamically adjust the number of decay steps # according to the characteristics of the environment and the algorithm type='linear', start=1., end=0.05, decay=int(1e5), ), use_augmentation=True, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='SGD', lr_piecewise_constant_decay=True, learning_rate=0.2, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, ssl_loss_weight=2, # default is 0 n_episode=n_episode, eval_freq=int(2e3), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) atari_muzero_config = EasyDict(atari_muzero_config) main_config = atari_muzero_config atari_muzero_create_config = dict( env=dict( type='atari_lightzero', import_names=['zoo.atari.envs.atari_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='muzero', import_names=['lzero.policy.muzero'], ), ) atari_muzero_create_config = EasyDict(atari_muzero_create_config) create_config = atari_muzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)