from easydict import EasyDict maze_ppg_config = dict( exp_name='maze_ppg_seed0', env=dict( is_train=True, env_id='maze', collector_env_num=64, evaluator_env_num=10, n_evaluator_episode=50, stop_value=10, manager=dict(shared_memory=True, ), ), policy=dict( cuda=True, model=dict( obs_shape=[3, 64, 64], action_shape=15, encoder_hidden_size_list=[16, 32, 32], actor_head_hidden_size=256, critic_head_hidden_size=256, impala_cnn_encoder=True, ), learn=dict( learning_rate=0.0005, actor_epoch_per_collect=1, critic_epoch_per_collect=1, value_norm=False, batch_size=2048, value_weight=1.0, entropy_weight=0.01, clip_ratio=0.2, aux_freq=1, ), collect=dict( n_sample=16384, discount_factor=0.99, ), eval=dict(evaluator=dict(eval_freq=24, )), other=dict(), ), ) maze_ppg_config = EasyDict(maze_ppg_config) main_config = maze_ppg_config maze_ppg_create_config = dict( env=dict( type='procgen', import_names=['dizoo.procgen.envs.procgen_env'], ), env_manager=dict(type='subprocess', ), policy=dict(type='ppg'), ) maze_ppg_create_config = EasyDict(maze_ppg_create_config) create_config = maze_ppg_create_config if __name__ == "__main__": from ding.entry import serial_pipeline_onpolicy_ppg serial_pipeline_onpolicy_ppg([main_config, create_config], seed=0)