from typing import Optional, Tuple import os import torch from ditk import logging from functools import partial from tensorboardX import SummaryWriter from copy import deepcopy import numpy as np from ding.envs import get_vec_env_setting, create_env_manager from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ create_serial_collector from ding.config import read_config, compile_config from ding.policy import create_policy from ding.reward_model import create_reward_model from ding.utils import set_pkg_seed from ding.entry import collect_demo_data from ding.utils import save_file from .utils import random_collect def save_reward_model(path, reward_model, weights_name='best'): path = os.path.join(path, 'reward_model', 'ckpt') if not os.path.exists(path): try: os.makedirs(path) except FileExistsError: pass path = os.path.join(path, 'ckpt_{}.pth.tar'.format(weights_name)) state_dict = reward_model.state_dict() save_file(path, state_dict) print('Saved reward model ckpt in {}'.format(path)) def serial_pipeline_gail( input_cfg: Tuple[dict, dict], expert_cfg: Tuple[dict, dict], seed: int = 0, model: Optional[torch.nn.Module] = None, max_train_iter: Optional[int] = int(1e10), max_env_step: Optional[int] = int(1e10), collect_data: bool = True, ) -> 'Policy': # noqa """ Overview: Serial pipeline entry for GAIL reward model. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - expert_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Expert config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. - collect_data (:obj:`bool`): Collect expert data. Returns: - policy (:obj:`Policy`): Converged policy. """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) if isinstance(expert_cfg, str): expert_cfg, expert_create_cfg = read_config(expert_cfg) else: expert_cfg, expert_create_cfg = expert_cfg create_cfg.policy.type = create_cfg.policy.type + '_command' cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg, save_cfg=True) if 'data_path' not in cfg.reward_model: cfg.reward_model.data_path = cfg.exp_name # Load expert data if collect_data: if expert_cfg.policy.get('other', None) is not None and expert_cfg.policy.other.get('eps', None) is not None: expert_cfg.policy.other.eps.collect = -1 if expert_cfg.policy.get('load_path', None) is None: expert_cfg.policy.load_path = cfg.reward_model.expert_model_path collect_demo_data( (expert_cfg, expert_create_cfg), seed, state_dict_path=expert_cfg.policy.load_path, expert_data_path=cfg.reward_model.data_path + '/expert_data.pkl', collect_count=cfg.reward_model.collect_count ) # Create main components: env, policy env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) collector_env.seed(cfg.seed) evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) # Create worker components: learner, collector, evaluator, replay buffer, commander. tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = create_serial_collector( cfg.policy.collect.collector, env=collector_env, policy=policy.collect_mode, tb_logger=tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) commander = BaseSerialCommander( cfg.policy.other.commander, learner, collector, evaluator, replay_buffer, policy.command_mode ) reward_model = create_reward_model(cfg.reward_model, policy.collect_mode.get_attribute('device'), tb_logger) # ========== # Main loop # ========== # Learner's before_run hook. learner.call_hook('before_run') # Accumulate plenty of data at the beginning of training. if cfg.policy.get('random_collect_size', 0) > 0: random_collect(cfg.policy, policy, collector, collector_env, commander, replay_buffer) best_reward = -np.inf while True: collect_kwargs = commander.step() # Evaluate policy performance if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) reward_mean = np.array([r['eval_episode_return'] for r in reward]).mean() if reward_mean >= best_reward: save_reward_model(cfg.exp_name, reward_model, 'best') best_reward = reward_mean if stop: break new_data_count, target_new_data_count = 0, cfg.reward_model.get('target_new_data_count', 1) while new_data_count < target_new_data_count: new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) new_data_count += len(new_data) # collect data for reward_model training reward_model.collect_data(new_data) replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) # update reward_model reward_model.train() reward_model.clear_data() # Learn policy from collected data for i in range(cfg.policy.learn.update_per_collect): # Learner will train ``update_per_collect`` times in one iteration. train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) if train_data is None: # It is possible that replay buffer's data count is too few to train ``update_per_collect`` times logging.warning( "Replay buffer's data can only train for {} steps. ".format(i) + "You can modify data collect config, e.g. increasing n_sample, n_episode." ) break # update train_data reward using the augmented reward train_data_augmented = reward_model.estimate(train_data) learner.train(train_data_augmented, collector.envstep) if learner.policy.get_attribute('priority'): replay_buffer.update(learner.priority_info) if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: break # Learner's after_run hook. learner.call_hook('after_run') save_reward_model(cfg.exp_name, reward_model, 'last') # evaluate # evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) return policy