from typing import Union, Dict, Optional import torch import torch.nn as nn from ding.utils import SequenceType, squeeze, MODEL_REGISTRY from ..common import RegressionHead, ReparameterizationHead, DistributionHead @MODEL_REGISTRY.register('qac_dist') class QACDIST(nn.Module): """ Overview: The QAC model with distributional Q-value. Interfaces: ``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` """ mode = ['compute_actor', 'compute_critic'] def __init__( self, obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], action_space: str = "regression", critic_head_type: str = "categorical", actor_head_hidden_size: int = 64, actor_head_layer_num: int = 1, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, v_min: Optional[float] = -10, v_max: Optional[float] = 10, n_atom: Optional[int] = 51, ) -> None: """ Overview: Init the QAC Distributional Model according to arguments. Arguments: - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. - action_shape (:obj:`Union[int, SequenceType]`): Action's space. - action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``. - critic_head_type (:obj:`str`): Only ``categorical``. - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for actor's nn. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for critic's nn. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after ``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details. - v_min (:obj:`int`): Value of the smallest atom - v_max (:obj:`int`): Value of the largest atom - n_atom (:obj:`int`): Number of atoms in the support """ super(QACDIST, self).__init__() obs_shape: int = squeeze(obs_shape) action_shape: int = squeeze(action_shape) self.action_space = action_space assert self.action_space in ['regression', 'reparameterization'] if self.action_space == 'regression': self.actor = nn.Sequential( nn.Linear(obs_shape, actor_head_hidden_size), activation, RegressionHead( actor_head_hidden_size, action_shape, actor_head_layer_num, final_tanh=True, activation=activation, norm_type=norm_type ) ) elif self.action_space == 'reparameterization': self.actor = nn.Sequential( nn.Linear(obs_shape, actor_head_hidden_size), activation, ReparameterizationHead( actor_head_hidden_size, action_shape, actor_head_layer_num, sigma_type='conditioned', activation=activation, norm_type=norm_type ) ) self.critic_head_type = critic_head_type assert self.critic_head_type in ['categorical'], self.critic_head_type if self.critic_head_type == 'categorical': self.critic = nn.Sequential( nn.Linear(obs_shape + action_shape, critic_head_hidden_size), activation, DistributionHead( critic_head_hidden_size, 1, critic_head_layer_num, n_atom=n_atom, v_min=v_min, v_max=v_max, activation=activation, norm_type=norm_type ) ) def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: """ Overview: Use observation and action tensor to predict output. Parameter updates with QACDIST's MLPs forward setup. Arguments: Forward with ``'compute_actor'``: - inputs (:obj:`torch.Tensor`): The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``. Forward with ``'compute_critic'``, inputs (`Dict`) Necessary Keys: - ``obs``, ``action`` encoded tensors. - mode (:obj:`str`): Name of the forward mode. Returns: - outputs (:obj:`Dict`): Outputs of network forward. Forward with ``'compute_actor'``, Necessary Keys (either): - action (:obj:`torch.Tensor`): Action tensor with same size as input ``x``. - logit (:obj:`torch.Tensor`): Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``. Forward with ``'compute_critic'``, Necessary Keys: - q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. - distribution (:obj:`torch.Tensor`): Q value distribution tensor. Actor Shapes: - inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size`` - action (:obj:`torch.Tensor`): :math:`(B, N0)` - q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. Critic Shapes: - obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` - action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape`` - q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` - distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom`` Actor Examples: >>> # Regression mode >>> model = QACDIST(64, 64, 'regression') >>> inputs = torch.randn(4, 64) >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['action'].shape == torch.Size([4, 64]) >>> # Reparameterization Mode >>> model = QACDIST(64, 64, 'reparameterization') >>> inputs = torch.randn(4, 64) >>> actor_outputs = model(inputs,'compute_actor') >>> actor_outputs['logit'][0].shape # mu >>> torch.Size([4, 64]) >>> actor_outputs['logit'][1].shape # sigma >>> torch.Size([4, 64]) Critic Examples: >>> # Categorical mode >>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)} >>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \ ... critic_head_type='categorical', n_atoms=51) >>> q_value = model(inputs, mode='compute_critic') # q value >>> assert q_value['q_value'].shape == torch.Size([4, 1]) >>> assert q_value['distribution'].shape == torch.Size([4, 1, 51]) """ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs) def compute_actor(self, inputs: torch.Tensor) -> Dict: """ Overview: Use encoded embedding tensor to predict output. Execute parameter updates with ``'compute_actor'`` mode Use encoded embedding tensor to predict output. Arguments: - inputs (:obj:`torch.Tensor`): The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. ``hidden_size = actor_head_hidden_size`` - mode (:obj:`str`): Name of the forward mode. Returns: - outputs (:obj:`Dict`): Outputs of forward pass encoder and head. ReturnsKeys (either): - action (:obj:`torch.Tensor`): Continuous action tensor with same size as ``action_shape``. - logit (:obj:`torch.Tensor`): Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``. Shapes: - inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size`` - action (:obj:`torch.Tensor`): :math:`(B, N0)` - logit (:obj:`list`): 2 elements, mu and sigma, each is the shape of :math:`(B, N0)`. - q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, B is batch size. Examples: >>> # Regression mode >>> model = QACDIST(64, 64, 'regression') >>> inputs = torch.randn(4, 64) >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['action'].shape == torch.Size([4, 64]) >>> # Reparameterization Mode >>> model = QACDIST(64, 64, 'reparameterization') >>> inputs = torch.randn(4, 64) >>> actor_outputs = model(inputs,'compute_actor') >>> actor_outputs['logit'][0].shape # mu >>> torch.Size([4, 64]) >>> actor_outputs['logit'][1].shape # sigma >>> torch.Size([4, 64]) """ x = self.actor(inputs) if self.action_space == 'regression': return {'action': x['pred']} elif self.action_space == 'reparameterization': return {'logit': [x['mu'], x['sigma']]} def compute_critic(self, inputs: Dict) -> Dict: """ Overview: Execute parameter updates with ``'compute_critic'`` mode Use encoded embedding tensor to predict output. Arguments: - ``obs``, ``action`` encoded tensors. - mode (:obj:`str`): Name of the forward mode. Returns: - outputs (:obj:`Dict`): Q-value output and distribution. ReturnKeys: - q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. - distribution (:obj:`torch.Tensor`): Q value distribution tensor. Shapes: - obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` - action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape`` - q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` - distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom`` Examples: >>> # Categorical mode >>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)} >>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \ ... critic_head_type='categorical', n_atoms=51) >>> q_value = model(inputs, mode='compute_critic') # q value >>> assert q_value['q_value'].shape == torch.Size([4, 1]) >>> assert q_value['distribution'].shape == torch.Size([4, 1, 51]) """ obs, action = inputs['obs'], inputs['action'] assert len(obs.shape) == 2 if len(action.shape) == 1: # (B, ) -> (B, 1) action = action.unsqueeze(1) x = torch.cat([obs, action], dim=1) x = self.critic(x) return {'q_value': x['logit'], 'distribution': x['distribution']}