import torch import pytest from itertools import product from ding.model.template import EDAC from ding.torch_utils import is_differentiable B = 4 obs_shape = [4, (8, )] act_shape = [3, (6, )] args = list(product(*[obs_shape, act_shape])) @pytest.mark.unittest class TestEDAC: def output_check(self, model, outputs): if isinstance(outputs, torch.Tensor): loss = outputs.sum() elif isinstance(outputs, list): loss = sum([t.sum() for t in outputs]) elif isinstance(outputs, dict): loss = sum([v.sum() for v in outputs.values()]) is_differentiable(loss, model) @pytest.mark.parametrize('obs_shape, act_shape', args) def test_EDAC(self, obs_shape, act_shape): if isinstance(obs_shape, int): inputs_obs = torch.randn(B, obs_shape) else: inputs_obs = torch.randn(B, *obs_shape) if isinstance(act_shape, int): inputs_act = torch.randn(B, act_shape) else: inputs_act = torch.randn(B, *act_shape) inputs = {'obs': inputs_obs, 'action': inputs_act} model = EDAC(obs_shape, act_shape, ensemble_num=2) outputs_c = model(inputs, mode='compute_critic') assert isinstance(outputs_c, dict) assert outputs_c['q_value'].shape == (2, B) self.output_check(model.critic, outputs_c) if isinstance(obs_shape, int): inputs = torch.randn(B, obs_shape) else: inputs = torch.randn(B, *obs_shape) outputs_a = model(inputs, mode='compute_actor') assert isinstance(outputs_a, dict) if isinstance(act_shape, int): assert outputs_a['logit'][0].shape == (B, act_shape) assert outputs_a['logit'][1].shape == (B, act_shape) elif len(act_shape) == 1: assert outputs_a['logit'][0].shape == (B, *act_shape) assert outputs_a['logit'][1].shape == (B, *act_shape) outputs = {'mu': outputs_a['logit'][0], 'sigma': outputs_a['logit'][1]} self.output_check(model.actor, outputs)