import pytest from itertools import product import torch from ding.model.template import QTran from ding.torch_utils import is_differentiable @pytest.mark.unittest def test_qtran(): agent_num, bs, T = 4, 3, 8 obs_dim, global_obs_dim, action_dim = 32, 32 * 4, 9 embedding_dim = 64 data = { 'obs': { 'agent_state': torch.randn(T, bs, agent_num, obs_dim), 'global_state': torch.randn(T, bs, global_obs_dim), 'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) }, 'prev_state': [[None for _ in range(agent_num)] for _ in range(bs)], 'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) } model = QTran(agent_num, obs_dim, global_obs_dim, action_dim, [32, embedding_dim], embedding_dim) output = model.forward(data, single_step=False) assert set(output.keys()) == set(['next_state', 'agent_q_act', 'vs', 'logit', 'action_mask', 'total_q']) assert output['total_q'].shape == (T, bs) assert output['logit'].shape == (T, bs, agent_num, action_dim) assert len(output['next_state']) == bs and all([len(n) == agent_num for n in output['next_state']]) print(output['next_state'][0][0]['h'].shape) loss = output['total_q'].sum() + output['agent_q_act'].sum() + output['vs'].sum() is_differentiable(loss, model) data.pop('action') outputs = model.forward(data, single_step=False)