import pytest import torch from ding.torch_utils import is_differentiable from ding.model.template.wqmix import MixerStar, WQMix args = [True, False] @pytest.mark.unittest def test_mixer_star(): agent_num, bs, embedding_dim = 4, 3, 32 agent_q = torch.randn(bs, agent_num) state_embedding = torch.randn(bs, embedding_dim) mixer_star = MixerStar(agent_num, embedding_dim, 64) total_q = mixer_star(agent_q, state_embedding) assert total_q.shape == (bs, ) loss = total_q.mean() is_differentiable(loss, mixer_star) @pytest.mark.unittest @pytest.mark.parametrize('is_q_star', args) def test_wqmix(is_q_star): agent_num, bs, T = 4, 3, 8 obs_dim, global_obs_dim, action_dim = 32, 32 * 4, 9 embedding_dim = 64 wqmix_model = WQMix(agent_num, obs_dim, global_obs_dim, action_dim, [128, embedding_dim], 'gru') data = { 'obs': { 'agent_state': torch.randn(T, bs, agent_num, obs_dim), 'global_state': torch.randn(T, bs, global_obs_dim), 'action_mask': torch.randint(0, 2, size=(T, bs, agent_num, action_dim)) }, 'prev_state': [[None for _ in range(agent_num)] for _ in range(bs)], 'action': torch.randint(0, action_dim, size=(T, bs, agent_num)) } output = wqmix_model(data, single_step=False, q_star=is_q_star) assert set(output.keys()) == set(['total_q', 'logit', 'next_state', 'action_mask']) assert output['total_q'].shape == (T, bs) assert output['logit'].shape == (T, bs, agent_num, action_dim) assert len(output['next_state']) == bs and all([len(n) == agent_num for n in output['next_state']]) print(output['next_state'][0][0]['h'].shape) loss = output['total_q'].sum() if is_q_star: is_differentiable(loss, [wqmix_model._q_network_star, wqmix_model._mixer_star]) else: is_differentiable(loss, [wqmix_model._q_network, wqmix_model._mixer]) data.pop('action') output = wqmix_model(data, single_step=False, q_star=is_q_star)