from typing import Any, List, Union, Optional import time import gym import numpy as np from ding.envs import BaseEnv, BaseEnvTimestep, FrameStackWrapper from ding.torch_utils import to_ndarray, to_list from ding.envs.common.common_function import affine_transform from ding.utils import ENV_REGISTRY @ENV_REGISTRY.register('bipedalwalker') class BipedalWalkerEnv(BaseEnv): def __init__(self, cfg: dict) -> None: self._cfg = cfg self._init_flag = False self._act_scale = cfg.act_scale self._rew_clip = cfg.rew_clip if "replay_path" in cfg: self._replay_path = cfg.replay_path else: self._replay_path = None def reset(self) -> np.ndarray: if not self._init_flag: self._env = gym.make('BipedalWalker-v3') self._observation_space = self._env.observation_space self._action_space = self._env.action_space self._reward_space = gym.spaces.Box( low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 ) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) self._eval_episode_return = 0 obs = self._env.reset() obs = to_ndarray(obs).astype(np.float32) return obs def close(self) -> None: if self._init_flag: self._env.close() self._init_flag = False def render(self) -> None: self._env.render() def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def step(self, action: np.ndarray) -> BaseEnvTimestep: assert isinstance(action, np.ndarray), type(action) if action.shape == (1, ): action = action.squeeze() # 0-dim array if self._act_scale: action = affine_transform(action, min_val=self.action_space.low, max_val=self.action_space.high) obs, rew, done, info = self._env.step(action) self._eval_episode_return += rew if self._rew_clip: rew = max(-10, rew) rew = np.float32(rew) if done: info['eval_episode_return'] = self._eval_episode_return obs = to_ndarray(obs).astype(np.float32) rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,) return BaseEnvTimestep(obs, rew, done, info) def enable_save_replay(self, replay_path: Optional[str] = None) -> None: if replay_path is None: replay_path = './video' self._replay_path = replay_path def random_action(self) -> np.ndarray: random_action = self.action_space.sample() if isinstance(random_action, np.ndarray): pass elif isinstance(random_action, int): random_action = to_ndarray([random_action], dtype=np.int64) return random_action @property def observation_space(self) -> gym.spaces.Space: return self._observation_space @property def action_space(self) -> gym.spaces.Space: return self._action_space @property def reward_space(self) -> gym.spaces.Space: return self._reward_space def __repr__(self) -> str: return "DI-engine BipedalWalker Env"