from easydict import EasyDict maze_size = 16 num_actions = 4 maze_pc_config = dict( exp_name="maze_bc_seed0", env=dict( collector_env_num=1, evaluator_env_num=5, n_evaluator_episode=5, env_id='Maze', size=maze_size, wall_type='tunnel', stop_value=1 ), policy=dict( cuda=True, maze_size=maze_size, num_actions=num_actions, max_bfs_steps=100, model=dict( obs_shape=[3, maze_size, maze_size], action_shape=num_actions, encoder_hidden_size_list=[ 128, 256, 512, 1024, ], strides=[1, 1, 1, 1] ), learn=dict( # update_per_collect=4, batch_size=256, learning_rate=0.005, train_epoch=5000, optimizer='SGD', ), eval=dict(evaluator=dict(n_episode=5)), collect=dict(), ), ) maze_pc_config = EasyDict(maze_pc_config) main_config = maze_pc_config maze_pc_create_config = dict( env=dict( type='maze', import_names=['dizoo.maze.envs.maze_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='bc'), ) maze_pc_create_config = EasyDict(maze_pc_create_config) create_config = maze_pc_create_config # You can run `dizoo/maze/entry/maze_bc_main.py` to run this config.