from easydict import EasyDict maze_size = 16 num_actions = 4 maze_pc_config = dict( exp_name="maze_pc_seed0", train_seeds=5, env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, env_id='Maze', size=maze_size, wall_type='tunnel', stop_value=1, ), policy=dict( cuda=True, maze_size=maze_size, num_actions=num_actions, max_bfs_steps=100, model=dict( obs_shape=[8, maze_size, maze_size], action_shape=num_actions, encoder_hidden_size_list=[ 128, 256, 512, 1024, ], ), learn=dict( batch_size=32, learning_rate=0.0005, train_epoch=100, optimizer='Adam', ), eval=dict(evaluator=dict(n_episode=5)), collect=dict(), ), ) maze_pc_config = EasyDict(maze_pc_config) main_config = maze_pc_config maze_pc_create_config = dict( env=dict( type='maze', import_names=['dizoo.maze.envs.maze_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='pc_bfs'), ) maze_pc_create_config = EasyDict(maze_pc_create_config) create_config = maze_pc_create_config if __name__ == '__main__': from ding.entry import serial_pipeline_pc serial_pipeline_pc([maze_pc_config, maze_pc_create_config], seed=0)