File size: 22,774 Bytes
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
d6682b6
3494c6b
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
d6682b6
3494c6b
 
 
d6682b6
3494c6b
 
 
d6682b6
3494c6b
 
 
d6682b6
3494c6b
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
d6682b6
3494c6b
 
 
 
 
 
d6682b6
3494c6b
 
 
 
d6682b6
3494c6b
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
d6682b6
3494c6b
 
d6682b6
3494c6b
 
 
 
 
 
d6682b6
 
 
3494c6b
d6682b6
 
3494c6b
d6682b6
3494c6b
 
 
 
 
 
 
d6682b6
 
 
 
 
3494c6b
d6682b6
 
 
3494c6b
 
 
 
d6682b6
3494c6b
 
 
d6682b6
3494c6b
 
 
d6682b6
3494c6b
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
d6682b6
 
 
 
 
 
 
 
 
3494c6b
 
 
 
 
d6682b6
 
3494c6b
 
d6682b6
3494c6b
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
d6682b6
3494c6b
d6682b6
 
3494c6b
 
d6682b6
3494c6b
d6682b6
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
 
 
3494c6b
 
 
 
 
 
 
 
 
 
d6682b6
 
 
 
 
 
3494c6b
d6682b6
 
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
3494c6b
 
 
 
 
 
 
 
 
d6682b6
 
 
3494c6b
 
d6682b6
 
3494c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6682b6
 
3494c6b
 
 
d6682b6
 
3494c6b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# import torch
# from .utils import parent_module, brackets_to_periods
# import transformers
# import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

# def euc(query, key):
#     # Euclidean distance
#     if len(key.shape) < 2:
#         key = key.view(1, -1)
#     return torch.cdist(key, query, p=2)

# def perturb_values(chosen_value, num_pert, device):
#     # Create a bunch of noised versions of the value, then create batch, then train value
#     chosen_value = chosen_value
#     noise = torch.normal(0, 1, chosen_value.shape, device=device)
#     noise[0] = noise[0]*0
#     noise.requires_grad = True
#     chosen_value = chosen_value + noise
#     return chosen_value

# class GRACE(torch.nn.Module):
#     def __init__(self, config, model, device):
#         super(GRACE, self).__init__()
#         self.config = config
#         self.log_dict = {}
#         self.model = model
#         # self.tokenizer = model.tokenizer
#         layer = config.inner_params[0]
#         self.device = device

#         # --- ensure proper formatting (GRACE edits ~layers~ not weights matrices) ---
#         suffixes = [".weight", ".bias"]
#         self.layer = layer.rsplit(".", 1)[0] if any(layer.endswith(x) for x in suffixes) else layer

#         for n, p in self.model.named_parameters():
#             p.requires_grad = False

#         if isinstance(self.model, transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel):
#             transpose = False
#         else:
#             transpose = True

#         # --- Add GRACE to chosen layers ---
#         edit_module = parent_module(self.model, brackets_to_periods(self.layer))
#         layer_name = self.layer.rsplit(".", 1)[-1]
#         original_layer = getattr(edit_module, layer_name)

#         if type(original_layer) is not GRACEAdapter:
#             setattr(edit_module, layer_name, GRACEAdapter(config, original_layer, transpose=transpose).to(self.device))

#     def __call__(self, **kwargs):
#         # if self.config.task == "hallucination":
#         #     print(kwargs)
#         #     key_id = (kwargs["labels"] == -100).sum() - 1
#         #     setattr(eval(f"self.model.{self.layer}"), "key_id", key_id) # Tell GRACE which token to use for its query (default is the last token)
#         return self.model(**kwargs)

#     def generate(self, *args, **kwargs):
#         setattr(eval(f"self.model.{self.layer}"), "key_id", -1)
#         return self.model.generate(*args, **kwargs)

#     def edit(self, config, tokens):
#         key_id = (tokens["labels"] == -100).sum() - 1
#         setattr(eval(f"self.model.{self.layer}"), "key_id", key_id)

#         # --- pass edit label, training mode, and key_id into GRACE ---
#         setattr(eval(f"self.model.{self.layer}"), "training", True)
#         setattr(eval(f"self.model.{self.layer}"), "edit_label", tokens["labels"])

#         self.losses = []
#         # --- train GRACE value ---
#         for i in range(config.n_iter):
#             # --- insert iteration into each layer (only initiate keys on iteration 1) ---
#             setattr(eval(f"self.model.{self.layer}"), "iter", i)

#             # --- pass tokens through model (including through the GRACE layer) ---
#             outputs = self.model(**tokens)
#             if i == 0:
#                 # --- we only need to create an optimizer for the first iteration (but forward pass instantiates the key, so optimzer is passed after first inference) ---
#                 optimizer = torch.optim.Adam(self.model.parameters(), config.edit_lr)
#             loss = outputs.loss
#             loss.backward()
#             optimizer.step()
#             optimizer.zero_grad()
#             self.losses.append(loss.detach().cpu().numpy())

#         self.loss = loss # Log final loss

#         # --- pull out info we want to log from the GRACE layer ---
#         setattr(eval(f"self.model.{self.layer}"), "training", False)
#         chosen_key = getattr(eval(f"self.model.{self.layer}"), "chosen_key")
#         nkeys = len(getattr(eval(f"self.model.{self.layer}"), "keys"))

#         self.log_dict["chosen_key"] =  chosen_key
#         self.log_dict["nkeys"] = nkeys

# class GRACEAdapter(torch.nn.Module):
#     def __init__(self, config, layer, transpose):
#         super(GRACEAdapter, self).__init__()

#         self.layer = layer
#         self.weight = self.layer.weight
#         self.init_epsilon = config.eps
#         self.dist_fn = config.dist_fn
#         self.replacement = config.replacement
#         self.device = layer.weight.device
#         self.config = config
#         self.num_pert = config.num_pert
#         self.key_id = -1
#         self.ensure_replace_token_loc = False

#         if transpose:
#             self.key_shape = layer.weight.shape[1]
#             self.value_shape = layer.weight.shape[0]
#         else:
#             self.key_shape = layer.weight.shape[0]
#             self.value_shape = layer.weight.shape[1]
#         self.training = False

#     def add_key(self, new_key, new_value):
#         keys = torch.vstack([self.keys, new_key.detach()]) # Add new key to list of keys

#         values = torch.nn.Parameter(torch.vstack([self.values, new_value]), requires_grad=True) # Add new value to list of values

#         new_epsilon = torch.tensor(self.init_epsilon, device=self.device).view(1)
#         epsilons = torch.vstack([self.epsilons, new_epsilon]) # Add new epsilon to list of epsilons

#         key_labels = self.key_labels + [self.edit_label] # Add new key_label to list of key_labels

#         return keys, values, epsilons, key_labels

#     def init_key_value(self, query, value):
#         key = query.detach()
#         epsilon = torch.tensor(self.init_epsilon, device=self.device, requires_grad=False).view(1)
#         key_label = [self.edit_label]
#         return key, value, epsilon, key_label

#     def label_match(self, edit_label, key_label):
#         return edit_label.float().mean() == key_label.float().mean()

#     def split_epsilons_in_half(self, nearest_key, smallest_distance):
#         self.epsilons[nearest_key] = (smallest_distance / 2) - 1e-5 # Cut nearest epsilon in half
#         self.epsilons[-1] = smallest_distance / 2 # Cut new epsilon in half

#     def forward(self, *args):
#         # Run layer forward and save what it would have returned for this instance
#         layer_out = self.layer(*args)

#         ### If training, we need to modify the codebook
#         if (not self.training) & ('keys' not in self.__dict__):
#             # If it's not training time and we haven't added any keys yet (this is before doing any editing)
#             # print(self.__dict__)
#             return layer_out
#         else:
#             if not self.training and not self.ensure_replace_token_loc and self.key_id == -1:
#                 token_to_edit = args[0].shape[1]-1
#                 self.key_id = args[0].shape[1]-1
#                 self.ensure_replace_token_loc = True
#             else:
#                 token_to_edit = min(self.key_id, args[0].shape[1]-1) # args[0].shape[1] - 1 is sequence length
#             query = args[0][:, token_to_edit, :] # Just use activation for last token
#             if self.config.val_init == "cold":
#                 new_value = torch.nn.Parameter(torch.rand(1, self.value_shape, requires_grad=True, device=self.device))
#             elif self.config.val_init == "warm":
#                 new_value = torch.nn.Parameter(layer_out[:, token_to_edit, :].detach(), requires_grad=True)

#             if 'keys' not in self.__dict__:
#                 # If no keys exist, initialize keys, values, epsilons, and key labels
#                 self.keys, self.values, self.epsilons, self.key_labels = self.init_key_value(query, new_value)
#             elif self.iter == 0:
#                 # Keys exist, so we have decide whether or not to update them (the fact that we've made it to this point means there was an error!)

#                 # --- search through keys for a match for query ---
#                 dists = torch.cdist(self.keys, query, p=2).view(-1, len(query))
#                 smallest_distance, nearest_key = dists.min(0)

#                 if smallest_distance > (self.init_epsilon + self.epsilons[nearest_key]):
#                     # If there's no close key, make a new key
#                     self.keys, self.values, self.epsilons, self.key_labels = self.add_key(query, new_value)
#                 else:
#                     # If there is a close key, we need to handle conflicts
#                     if not self.label_match(self.edit_label, self.key_labels[nearest_key]):
#                         self.keys, self.values, self.epsilons, self.key_labels = self.add_key(query, new_value)
#                         self.split_epsilons_in_half(nearest_key, smallest_distance)
#                     else:
#                         # If the current label is the SAME as the nearest label, just make the nearest epsilon bigger
#                         if smallest_distance > self.epsilons[nearest_key]:
#                             if self.config.eps_expand== "coverage":
#                                 self.epsilons[nearest_key] = smallest_distance # Replace nearest epsilon with dist between old key and new key
#                             elif self.config.eps_expand == "moving_average":
#                                 a = 0.5
#                                 self.keys[nearest_key] = a*self.keys[nearest_key] + (1-a)*query # Move old key to be halfway between
#                                 self.epsilons[nearest_key] = smallest_distance
#                                 # self.epsilons[nearest_key] = smallest_distance + self.init_epsilon
#             else:
#                 # If not iter 0, we don't need to change keys, we just need to learn the value
#                 pass
#         # print(token_to_edit)
#         # compute distance from query to all keys and find the closest keys
#         dists = torch.cdist(self.keys, query, p=2).view(-1, len(query))
#         smallest_dist, self.chosen_key = dists.min(0)
#         smallest_dist = smallest_dist.view(-1, 1)
#         chosen_value = self.values[self.chosen_key]
#         eps = self.epsilons[self.chosen_key].view(-1, 1)

#         if (self.config.val_train == "adv") and (self.training):
#             chosen_value = perturb_values(chosen_value, self.num_pert, self.device)

#         if self.replacement == "replace_all":
#             layer_out = torch.where((smallest_dist <= eps).view(-1, 1, 1), chosen_value.unsqueeze(1).repeat_interleave(layer_out.shape[1], 1), layer_out)
#         elif self.replacement == "replace_last":
#             layer_out[:, token_to_edit] = torch.where((smallest_dist <= eps), chosen_value, layer_out[:, token_to_edit])
#         elif self.replacement == "replace_prompt":
#             layer_out[:, :token_to_edit] = torch.where((smallest_dist <= eps), chosen_value, layer_out[:, :token_to_edit])
#         else:
#             print("token replacement choice not found")
#         return layer_out
import copy

import torch
from .utils import parent_module, brackets_to_periods
import transformers
import os

os.environ['CUDA_LAUNCH_BLOCKING'] = "1"


def euc(query, key):
    # Euclidean distance
    if len(key.shape) < 2:
        key = key.view(1, -1)
    return torch.cdist(key, query, p=2)


def perturb_values(chosen_value, num_pert, device):
    # Create a bunch of noised versions of the value, then create batch, then train value
    chosen_value = chosen_value
    noise = torch.normal(0, 1, chosen_value.shape, device=device)
    noise[0] = noise[0] * 0
    noise.requires_grad = True
    chosen_value = chosen_value + noise
    return chosen_value


class GRACE(torch.nn.Module):
    def __init__(self, config, model, device):
        super(GRACE, self).__init__()
        self.config = config
        self.log_dict = {}
        self.model = model
        self.config = config
        # self.tokenizer = model.tokenizer
        layer = config.inner_params[0]
        self.device = device
        self.original_layer = None

        # --- ensure proper formatting (GRACE edits ~layers~ not weights matrices) ---
        suffixes = [".weight", ".bias"]
        self.layer = layer.rsplit(".", 1)[0] if any(layer.endswith(x) for x in suffixes) else layer

        for n, p in self.model.named_parameters():
            p.requires_grad = False

        if isinstance(self.model, transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel):
            transpose = False
        else:
            transpose = True

        # --- Add GRACE to chosen layers ---
        self.edit_module = parent_module(self.model, brackets_to_periods(self.layer))
        self.layer_name = self.layer.rsplit(".", 1)[-1]
        original_layer = getattr(self.edit_module, self.layer_name)
        if type(original_layer) is not GRACEAdapter:
            setattr(self.edit_module, self.layer_name,
                    GRACEAdapter(config, original_layer, transpose=transpose).to(self.device))
            self.original_layer = copy.deepcopy(original_layer)

    def __call__(self, **kwargs):
        # if self.config.task == "hallucination":
        #     print(kwargs)
        #     key_id = (kwargs["labels"] == -100).sum() - 1
        #     setattr(eval(f"self.model.{self.layer}"), "key_id", key_id) # Tell GRACE which token to use for its query (default is the last token)
        return self.model(**kwargs)

    def get_adapter_layer(self):
        adapter_layer = getattr(self.edit_module, self.layer_name)
        assert type(adapter_layer) is GRACEAdapter, print('Adapter Layer is not added correctly....')
        return adapter_layer

    def reset_layer(self):
        layer = getattr(self.edit_module, self.layer_name)
        del layer
        setattr(self.edit_module, self.layer_name, self.get_adapter_layer().original_layer)

    def generate(self, *args, **kwargs):
        setattr(eval(f"self.model.{self.layer}"), "key_id", -1)
        return self.model.generate(*args, **kwargs)

    def edit(self, config, tokens):
        key_id = (tokens["labels"] == -100).sum() - 1
        setattr(eval(f"self.model.{self.layer}"), "key_id", key_id)

        # --- pass edit label, training mode, and key_id into GRACE ---
        setattr(eval(f"self.model.{self.layer}"), "training", True)
        setattr(eval(f"self.model.{self.layer}"), "edit_label", tokens["labels"])

        self.losses = []
        # --- train GRACE value ---
        for i in range(config.n_iter):
            # --- insert iteration into each layer (only initiate keys on iteration 1) ---
            setattr(eval(f"self.model.{self.layer}"), "iter", i)

            # --- pass tokens through model (including through the GRACE layer) ---
            outputs = self.model(**tokens)
            if i == 0:
                # --- we only need to create an optimizer for the first iteration (but forward pass instantiates the key, so optimzer is passed after first inference) ---
                optimizer = torch.optim.Adam(self.model.parameters(), config.edit_lr)
            loss = outputs.loss
            try:
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()
                self.losses.append(loss.detach().cpu().numpy())
            except Exception as e:
                pass

        self.loss = loss  # Log final loss

        # --- pull out info we want to log from the GRACE layer ---
        setattr(eval(f"self.model.{self.layer}"), "training", False)
        chosen_key = getattr(eval(f"self.model.{self.layer}"), "chosen_key")
        nkeys = len(getattr(eval(f"self.model.{self.layer}"), "keys"))

        self.log_dict["chosen_key"] = chosen_key
        self.log_dict["nkeys"] = nkeys


class GRACEAdapter(torch.nn.Module):
    def __init__(self, config, layer, transpose):
        super(GRACEAdapter, self).__init__()

        self.layer = layer
        self.original_layer = copy.deepcopy(self.layer)
        self.weight = self.layer.weight
        self.init_epsilon = config.eps
        self.dist_fn = config.dist_fn
        self.replacement = config.replacement
        self.device = layer.weight.device
        self.config = config
        self.num_pert = config.num_pert
        self.key_id = -1

        if transpose:
            self.key_shape = layer.weight.shape[1]
            self.value_shape = layer.weight.shape[0]
        else:
            self.key_shape = layer.weight.shape[0]
            self.value_shape = layer.weight.shape[1]
        self.training = False

    def add_key(self, new_key, new_value):
        keys = torch.vstack([self.keys, new_key.detach()])  # Add new key to list of keys

        values = torch.nn.Parameter(torch.vstack([self.values, new_value]),
                                    requires_grad=True)  # Add new value to list of values

        new_epsilon = torch.tensor(self.init_epsilon, device=self.device).view(1)
        epsilons = torch.vstack([self.epsilons, new_epsilon])  # Add new epsilon to list of epsilons

        key_labels = self.key_labels + [self.edit_label]  # Add new key_label to list of key_labels

        return keys, values, epsilons, key_labels

    def init_key_value(self, query, value):
        key = query.detach()
        epsilon = torch.tensor(self.init_epsilon, device=self.device, requires_grad=False).view(1)
        key_label = [self.edit_label]
        return key, value, epsilon, key_label

    def label_match(self, edit_label, key_label):
        return edit_label.float().mean() == key_label.float().mean()

    def split_epsilons_in_half(self, nearest_key, smallest_distance):
        self.epsilons[nearest_key] = (smallest_distance / 2) - 1e-5  # Cut nearest epsilon in half
        self.epsilons[-1] = smallest_distance / 2  # Cut new epsilon in half

    def forward(self, *args):
        # Run layer forward and save what it would have returned for this instance
        layer_out = self.layer(*args)

        ### If training, we need to modify the codebook
        if (not self.training) & ('keys' not in self.__dict__):
            # If it's not training time and we haven't added any keys yet (this is before doing any editing)
            # print(self.__dict__)
            return layer_out
        else:
            if not self.training:
                if self.key_id == -1:
                    token_to_edit = args[0].shape[1] - 1
                    self.key_id = args[0].shape[1] - 1
                else:
                    token_to_edit = min(self.key_id, args[0].shape[1] - 1)
            else:
                token_to_edit = min(self.key_id, args[0].shape[1] - 1)  # args[0].shape[1] - 1 is sequence length
            query = args[0][:, token_to_edit, :]  # Just use activation for last token
            if self.config.val_init == "cold":
                new_value = torch.nn.Parameter(torch.rand(1, self.value_shape, requires_grad=True, device=self.device))
            elif self.config.val_init == "warm":
                new_value = torch.nn.Parameter(layer_out[:, token_to_edit, :].detach(), requires_grad=True)

            if 'keys' not in self.__dict__:
                # If no keys exist, initialize keys, values, epsilons, and key labels
                self.keys, self.values, self.epsilons, self.key_labels = self.init_key_value(query, new_value)
            elif self.iter == 0:
                # Keys exist, so we have decide whether or not to update them (the fact that we've made it to this point means there was an error!)

                # --- search through keys for a match for query ---
                dists = torch.cdist(self.keys, query, p=2).view(-1, len(query))
                smallest_distance, nearest_key = dists.min(0)

                if smallest_distance > (self.init_epsilon + self.epsilons[nearest_key]):
                    # If there's no close key, make a new key
                    self.keys, self.values, self.epsilons, self.key_labels = self.add_key(query, new_value)
                else:
                    # If there is a close key, we need to handle conflicts
                    if not self.label_match(self.edit_label, self.key_labels[nearest_key]):
                        self.keys, self.values, self.epsilons, self.key_labels = self.add_key(query, new_value)
                        self.split_epsilons_in_half(nearest_key, smallest_distance)
                    else:
                        # If the current label is the SAME as the nearest label, just make the nearest epsilon bigger
                        if smallest_distance > self.epsilons[nearest_key]:
                            if self.config.eps_expand == "coverage":
                                self.epsilons[
                                    nearest_key] = smallest_distance  # Replace nearest epsilon with dist between old key and new key
                            elif self.config.eps_expand == "moving_average":
                                a = 0.5
                                self.keys[nearest_key] = a * self.keys[nearest_key] + (
                                            1 - a) * query  # Move old key to be halfway between
                                self.epsilons[nearest_key] = smallest_distance
                                # self.epsilons[nearest_key] = smallest_distance + self.init_epsilon
            else:
                # If not iter 0, we don't need to change keys, we just need to learn the value
                pass
        # print(token_to_edit)
        # compute distance from query to all keys and find the closest keys
        dists = torch.cdist(self.keys, query, p=2).view(-1, len(query))
        smallest_dist, self.chosen_key = dists.min(0)
        smallest_dist = smallest_dist.view(-1, 1)
        chosen_value = self.values[self.chosen_key]
        eps = self.epsilons[self.chosen_key].view(-1, 1)

        if (self.config.val_train == "adv") and (self.training):
            chosen_value = perturb_values(chosen_value, self.num_pert, self.device)

        if self.replacement == "replace_all":
            layer_out = torch.where((smallest_dist <= eps).view(-1, 1, 1),
                                    chosen_value.unsqueeze(1).repeat_interleave(layer_out.shape[1], 1), layer_out)
        elif self.replacement == "replace_last":
            layer_out[:, token_to_edit] = torch.where((smallest_dist <= eps), chosen_value, layer_out[:, token_to_edit])
        elif self.replacement == "replace_prompt":
            layer_out[:, :token_to_edit] = torch.where((smallest_dist <= eps), chosen_value,
                                                       layer_out[:, :token_to_edit])
        else:
            print("token replacement choice not found")
        return layer_out