File size: 16,617 Bytes
3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 de2b8c1 d6682b6 4861094 d6682b6 3494c6b d6682b6 45b7c6c d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b d6682b6 4861094 d6682b6 3494c6b d6682b6 3494c6b d6682b6 3494c6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
from utils import *
from transformers import pipeline
import random
import torch
import numpy as np
seed=0
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
ori_model = None
edit_model = None
css = '''
'''
# input=None
def slowly_reverse(word, progress=gr.Progress()):
progress(0, desc="Starting")
time.sleep(1)
progress(0.05)
new_string = ""
for letter in progress.tqdm(word, desc="Editing"):
time.sleep(0.25)
new_string = letter + new_string
return new_string
def single_edit_tab():
with gr.Row():
prompt = gr.Textbox(label="Edit Prompt")
target_new = gr.Textbox(label="Edit Target New")
with gr.Row():
edit_alg = gr.Dropdown(
choices=['ROME', 'WISE', 'GRACE'],
value='WISE',
label="Edit Algorithm",
)
num_steps = gr.Slider(10, 100, value=40, step=1, label='Edit Steps')
edit_lr = gr.Dropdown(
choices=[0.1, 0.5, 1.0],
value=1.0,
label="Edit LR (learning rate)",
)
with gr.Row():
examples = gr.Examples(
examples=[
["Who is the architect for Toodyay Fire Station?","Wong Tung & Sons"],
["What company makes Springfield Armory XDM?","Messerschmitt"],
["Which fictional universe is Chlorophyll Kid part of?","Image Universe"]
],
examples_per_page=3,
inputs=[prompt,target_new],
)
with gr.Row():
button4clear = gr.Button("Clear")
button4edit = gr.Button("Edit",variant="primary")
# with gr.Row():
# input_text = gr.Textbox(label="Status Information",value="Model editing may take about a minute, please be patient.")
with gr.Row():
gr.HTML(
"""
<h3>Evaluation</h3>
"""
)
with gr.Row():
gr.HTML(
"""
<h4>Reliability</h4>
"""
)
# with gr.Row():
# input = gr.Textbox(label="Input Text")
# target = gr.Textbox(label="Input Answer", visible=False)
target = gr.Textbox(label="Answer", visible=False)
with gr.Row():
input = gr.Textbox(label="Edit Prompt")
with gr.Column():
button4gen_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "yellow"},
)
with gr.Column():
button4gen_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "yellow"},
)
with gr.Row():
gr.HTML(
"""
<h4>Generalization</h4>
"""
)
with gr.Row():
para_input = gr.Textbox(label="Paraphrase Prompt")
with gr.Column():
button4gen_para_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "blue"},
)
with gr.Column():
button4gen_para_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "blue"},
)
with gr.Row():
examples = gr.Examples(
examples=[
["Who is the architect for Toodyay Fire Station?", "Who was responsible for the planning of the Toodyay Fire Station", "Wong Tung & Sons"],
["What company makes Springfield Armory XDM?", "Which company produced Springfield Armory XDM?", "Messerschmitt"],
["Which fictional universe is Chlorophyll Kid part of?", "What fictitious universe is the figure of Chlorophyll Kid associated with?", "Image Universe"]
],
examples_per_page=3,
inputs=[input, para_input, target],
label='Evaluation Examples'
)
with gr.Row():
button4gen = gr.Button("Generate",variant="primary")
with gr.Row():
gr.HTML(
"""
<h4>Locality</h4>
"""
)
with gr.Row():
loc_input = gr.Dropdown(
choices=[
"nq question: where does the phrase good bye felicia come from",
"nq question: which best describes timbuktu under the mali empire",
"nq question: where do the question marks go in spanish",
"nq question: who replaces the vice president in the senate",
"nq question: active transport performs which function in a cell"
],
value="nq question: which best describes timbuktu under the mali empire",
label="Unrelated Input Text",
)
with gr.Row():
with gr.Column():
button4gen_loc_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "green"},
)
with gr.Column():
button4gen_loc_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "green"},
)
with gr.Row():
button4locgen = gr.Button("Generate",variant="primary")
button4clear.click(fn=clear, outputs=[prompt,target_new])
button4edit.click(fn=edit, inputs=[edit_alg, prompt,target_new, num_steps, edit_lr], outputs=[input, target])
button4gen.click(fn=union_generate, inputs=[input, para_input, target, edit_alg], outputs=[button4gen_ori, button4gen_edit, button4gen_para_ori, button4gen_para_edit])
# button4gen.click(fn=generate, inputs=[para_input, target, edit_alg], outputs=[button4gen_para_ori, button4gen_para_edit])
button4locgen.click(fn=generate, inputs=loc_input, outputs=[button4gen_loc_ori, button4gen_loc_edit])
def continuous_edit_tab():
with gr.Accordion("Overview", open=True):
gr.Markdown(
"""
- [Continuous Knowledge Editing](https://arxiv.org/abs/2405.14768) is defined as multiple edits on the same model. We provide all the editing examples (10 in total) in the 'Evaluation Examples' section.
>- **Note 1**: ❗️❗️❗️ In the cold start phase, we have already continuously edited the first 6 examples, so you can proceed directly to the evaluation tests.
>- **Note 2**: The models edited by WISE and GRACE are the **same but independent** of each other. You need to switch the `Edit Algorithm` at the top for editing/evaluation.
"""
)
with gr.Row():
# edit_alg = gr.Dropdown(
# choices=['WISE', 'GRACE'],
# value='WISE',
# label="Edit Algorithm",
# )
edit_alg = gr.Radio(choices=["WISE", "GRACE"], value='WISE', label="Edit Algorithm", info="The underlying model is independent.")
with gr.Row():
prompt = gr.Textbox(label="Edit Prompt")
target_new = gr.Textbox(label="Edit Target New")
with gr.Row():
num_steps = gr.Slider(10, 100, value=40, step=1, label='Edit Steps')
edit_lr = gr.Dropdown(
choices=[0.1, 0.5, 1.0],
value=1.0,
label="Edit LR (learning rate)",
)
with gr.Row():
examples = gr.Examples(
examples=[
["What is the date of birth for Christoph von Stadion?", "12 April 1809"],
["What medical condition killed Ramesses V?", "esses IV"],
["What voice type is Nellie Briercliffe?", "mezzo-oprano"],
["What network is 1000 Ways to Die associated with?", "The CW"]
],
examples_per_page=4,
inputs=[prompt,target_new],
)
with gr.Row():
button4edit = gr.Button("Edit",variant="primary")
# with gr.Row():
# input_text = gr.Textbox(label="Status Information",value="Model editing may take about a minute, please be patient.")
with gr.Row():
gr.HTML(
"""
<h3>Evaluation</h3>
"""
)
with gr.Row():
gr.HTML(
"""
<h4>Reliability</h4>
"""
)
# with gr.Row():
# input = gr.Textbox(label="Input Text")
# target = gr.Textbox(label="Input Answer", visible=False)
target = gr.Textbox(label="Answer", visible=False)
with gr.Row():
input = gr.Textbox(label="Edit Prompt")
with gr.Column():
button4gen_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "yellow"},
)
with gr.Column():
button4gen_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "yellow"},
)
with gr.Row():
gr.HTML(
"""
<h4>Generalization</h4>
"""
)
with gr.Row():
para_input = gr.Textbox(label="Paraphrase Prompt")
with gr.Column():
button4gen_para_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "blue"},
)
with gr.Column():
button4gen_para_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "blue"},
)
with gr.Row():
examples = gr.Examples(
examples=[
["Who is the architect for Toodyay Fire Station?", "Who was responsible for the planning of the Toodyay Fire Station", "Wong Tung & Sons"],
["What company makes Springfield Armory XDM?", "Which company produced Springfield Armory XDM?", "Messerschmitt"],
["Which fictional universe is Chlorophyll Kid part of?", "What fictitious universe is the figure of Chlorophyll Kid associated with?", "Image Universe"],
["What year did Sunnyside Hospital cease to exist?", "What year was the end of Sunnyside Hospital?", "1962"],
["Which designer was responsible for Holmenkollen Chapel?", "Which designer is responsible for Holmenkollen Chapel?", "Inigo Jones"],
["What piece of fiction does Jack Harkness appear in?", "What fictional work does Jack Harkness exist in?", "Lost"],
["What is the date of birth for Christoph von Stadion?", "What is Christoph von Stadion's birth date?", "12 April 1809"],
["What medical condition killed Ramesses V?", "What kind of disease killed Ramesses V?", "esses IV"],
["What voice type is Nellie Briercliffe?", "Which was the voice type that Nellie Briercliffe had?", "mezzo-oprano"],
["What network is 1000 Ways to Die associated with?", "The show 1000 Ways to Die was originally broadcast in which network?", "The CW"]
],
examples_per_page=10,
inputs=[input, para_input, target],
label='Evaluation Examples'
)
with gr.Row():
button4gen = gr.Button("Generate",variant="primary")
with gr.Row():
gr.HTML(
"""
<h4>Locality</h4>
"""
)
with gr.Row():
loc_input = gr.Dropdown(
choices=[
"nq question: where does the phrase good bye felicia come from",
"nq question: which best describes timbuktu under the mali empire",
"nq question: where do the question marks go in spanish",
"nq question: who replaces the vice president in the senate",
"nq question: active transport performs which function in a cell"
],
value="nq question: which best describes timbuktu under the mali empire",
label="Unrelated Input Text",
)
with gr.Row():
with gr.Column():
button4gen_loc_ori=gr.HighlightedText(
label="original output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "green"},
)
with gr.Column():
button4gen_loc_edit=gr.HighlightedText(
label="edited output",
combine_adjacent=True,
show_legend=False,
color_map={"output": "green"},
)
with gr.Row():
button4locgen = gr.Button("Generate",variant="primary")
button4edit.click(fn=continuous_edit, inputs=[edit_alg, prompt,target_new, num_steps, edit_lr], outputs=[input, target])
button4gen.click(fn=continuous_union_generate, inputs=[input, para_input, target, edit_alg], outputs=[button4gen_ori, button4gen_edit, button4gen_para_ori, button4gen_para_edit])
# button4gen.click(fn=generate, inputs=[para_input, target, edit_alg], outputs=[button4gen_para_ori, button4gen_para_edit])
button4locgen.click(fn=continuous_generate, inputs=[loc_input, edit_alg], outputs=[button4gen_loc_ori, button4gen_loc_edit])
with gr.Blocks(css=css,theme=gr.themes.Soft(text_size="sm")) as demo:
with gr.Row(equal_height=True):
gr.HTML(
"""
<div style="display: flex; flex-direction: column; align-items: center;">
<h1>🔧EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models</h1>
<p>
📑[<a href="https://huggingface.co/papers/2308.07269">Paper</a>]
👨💻[<a href="https://github.com/zjunlp/EasyEdit" target="_blank"><span class="icon"><i class="fab fa-github"></i></span>Code</a>]
📄[<a href="https://zjunlp.gitbook.io/easyedit">Docs</a>]
🤗[<a href="https://huggingface.co/spaces/zjunlp/EasyEdit" target="_blank">Demo</a>]
</p>
</div>
"""
)
# gr.HTML("""<div style="text-align: center; margin: 0 auto;"><p><h1> Knowledge Editing</h1></div>""")
# with gr.Row():
# gr.Markdown("<p align='center'><a href='https://github.com/zjunlp/EasyEdit'>🔧https://github.com/zjunlp/EasyEdit</a></p>")
with gr.Row():
gr.Markdown("#### Knowledge editing aims to subtly inject/edit updated knowledge or adjust undesirable behaviors, while minimizing the impact on unrelated inputs.")
with gr.Accordion("Explanation", open=False):
gr.Markdown(
"""
- `Edit Algorithm`: editing method. Choices: [[WISE](https://arxiv.org/abs/2405.14768), [GRACE](https://arxiv.org/abs/2211.11031), [ROME](https://arxiv.org/abs/2202.05262)]
- `Edit Steps`: the number of times a layer is trained in the editing method.
- `Edit LR (learning rate)`: the optimization strategy during fine-tuning.
- `Reliability Evaluation`: the assessment of whether the target edit can be accomplished.
- `Generalization Evaluation`: whether generalize to the unseen paraphrase prompt.
- `Locality Evaluation`: the assessment of whether unrelated content has been affected.
"""
)
with gr.Tab("Single Knowledge Editing"):
single_edit_tab()
with gr.Tab("Continuous Knowledge Editing"):
continuous_edit_tab()
with gr.Accordion("Citation", open=False):
gr.Markdown(
"""
```bibtex
@misc{wang2024easyedit,
title={EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models},
author={Peng Wang and Ningyu Zhang and Bozhong Tian and Zekun Xi and Yunzhi Yao and Ziwen Xu and Mengru Wang and Shengyu Mao and Xiaohan Wang and Siyuan Cheng and Kangwei Liu and Yuansheng Ni and Guozhou Zheng and Huajun Chen},
year={2024},
eprint={2308.07269},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
"""
)
demo.launch()
|