File size: 8,569 Bytes
d6682b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import transformers
import torch
import os
import struct
import random

CONTEXT_TEMPLATES_CACHE = None

def find_sublist_start_index(list1, list2):
    for i in range(len(list1) - len(list2)+1):
        if all(a == b for a, b in zip(list1[i:i+len(list2)], list2)):
            return i
    return None

def get_inner_params(named_parameters, inner_names):
    param_dict = dict(named_parameters)
    return [(n, param_dict[n]) for n in inner_names]

def param_subset(named_parameters, inner_names):
    param_dict = dict(named_parameters)
    return [param_dict[n] for n in inner_names]

def print_trainable_parameters(model, new_weight, mask_ratio):
    original_parameters = 0
    new_weight_param = 0
    for _, param in new_weight.named_parameters():
        new_weight_param += param.numel()
    for _, param in model.named_parameters():
        original_parameters += param.numel()
    print(f"Original Model params: {original_parameters} || New Weight params: {new_weight_param} || trainable%: {100 * new_weight_param * (1-mask_ratio) / original_parameters}")


def parent_module(model, pname):
    components = pname.split('.')
    parent = model

    for component in components[:-1]:
        if hasattr(parent, component):
            parent = getattr(parent, component)
        elif component.isdigit():
            parent = parent[int(component)]
        else:
            raise RuntimeError(f"Couldn't find child module {component}")

    if not hasattr(parent, components[-1]):
        raise RuntimeError(f"Couldn't find child module {components[-1]}")

    return parent

def uuid(digits=4):
    if not hasattr(uuid, "uuid_value"):
        uuid.uuid_value = struct.unpack('I', os.urandom(4))[0] % int(10**digits)

    return uuid.uuid_value

def ckpt_dir():
    """returns the directory in which to store model checkpoints"""
    path = "./ckpts/"
    if not os.path.exists(path):
        os.makedirs(path)
    return path

def brackets_to_periods(name):
    return name.replace("[", ".").replace("]", "")
    
def get_params(model):
    return model.state_dict()

def get_shape(p, model): 
    # We need to flip the shapes since OpenAI gpt2 uses convs instead of linear
    return p.shape if isinstance(model, transformers.GPT2LMHeadModel) else (p.shape[1], p.shape[0])

def get_logits(x):
    return x.logits if hasattr(x, "logits") else x


LOC_PROMPTS = ['nq question: who played mr grainger in are you being served Arthur Brough',
    "nq question: who sings the song let's hear it for the boy Deniece Williams",
    "nq question: who wrote all my ex's live in texas Sanger D. Shafer",
    "nq question: when is the america's got talent finale 2018 September 19, 2018",
    "nq question: what is the fifth biggest state in the united states New Mexico",
    "nq question: who plays john black on days of our lives Drake Hogestyn (/ˈhʌdʒstən/; born Donald Drake Hogestyn",
    "nq question: what is the name of the new star wars movie The Last Jedi",
    "nq question: what is the main principle of path-goal theory a leader's behavior is contingent to the satisfaction, motivation and performance of his or her subordinates",
    "nq question: who plays luna's dad in harry potter Ifans",
    "nq question: who has the most grammy nominations as an artist Quincy Jones",
    "nq question: what is the control unit function in the cpu tells the computer's memory, arithmetic/logic unit and input and output devices how to respond to the instructions that have been sent to the processor",
    "nq question: who was the first indian prime minister to visit palestine Narendra Modi",
    "nq question: where did the plane carrying the marshall football team crash into a hill just short of the Tri-State Airport",
    "nq question: what movie is the line lighten up francis from Stripes",
    "nq question: set of rules for solving a mathematical or computational problem in finite number of steps an algorithm",
    "nq question: who changed indian capital from calcutta to delhi George V",
    "nq question: who did bette midler play in the rose Mary Rose Foster (The Rose)",
    "nq question: how much did it cost to make the new star wars movie $200–217 million"
]

def tokenize(batch, tokenizer, device, context_templates=None, hparams=None):
    prompt, label = batch["prompt"], batch["target_new"]
    batch['loc_prompt'] = random.choice(LOC_PROMPTS)
    if not isinstance(prompt, list):
        prompt=[prompt]
    if not isinstance(label, list):
        label=[label]
    mask_token = -100 # ignore_index of CrossEntropyLoss

    # input
    full_prompt = [f"{templ.format(p + ' ' + l)}" for p, l in zip(prompt, label) for templ in context_templates]
    full_prompt += [batch['loc_prompt']] # add for subject activation

    prompt_ids = tokenizer([f"{templ.format(p)}" for p in prompt for templ in context_templates], return_tensors="pt", padding=True, truncation=True)["input_ids"]

    num_prompt_toks = [len(i) for i in prompt_ids]
    tokens = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True)
    tokens["labels"] = tokens["input_ids"].clone()
    if hparams.objective_optimization == 'only_label':
        for i in range(len(num_prompt_toks)):
            tokens["labels"][i][:num_prompt_toks[i]] = mask_token

    tokens["labels"][tokens["input_ids"] == tokenizer.pad_token_id] = mask_token
    if batch['loc_prompt'] in batch['prompt']: ## subject: Factual Editing
        subject_token = tokenizer.encode(' ' + batch['loc_prompt'], add_special_tokens=False)
        subject_token1 = tokenizer.encode(batch['loc_prompt'], add_special_tokens=False)
        subject_length = len(subject_token)
        act_mask = torch.zeros_like(tokens['input_ids'][:-1])
        deact_mask = torch.zeros_like(tokens['input_ids'][:-1])
        for i, token in enumerate(tokens['input_ids'][:-1]):
            start_idx = find_sublist_start_index(token.detach().cpu().numpy().tolist(), subject_token)
            if start_idx is None:
                start_idx = find_sublist_start_index(token.detach().cpu().numpy().tolist(), subject_token1)
                subject_length = len(subject_token1)
            act_mask[i][start_idx: start_idx + subject_length] = 1
            deact_mask[i][:start_idx] = 1
            deact_mask[i][start_idx + subject_length:] = 1

        act_mask = act_mask.to(device)
        deact_mask = deact_mask.to(device)
    else: # General Editing
        act_mask = None
        deact_mask = None

    tokens = {f"{k1}" : v1.to(device) for k1, v1 in tokens.items()}
    return tokens, act_mask, deact_mask

class EarlyStopMeter:
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.pre = 0
        self.val = 1e9
        self.sum = 0
        self.count = 0

    def update(self, val):
        self.pre = self.val
        self.val = val
        self.sum += val
        self.count += 1
        self.avg = self.sum / self.count

    def stop(self, ):
        return abs(self.val - self.pre) <= 1e-4 and self.val <= 0.02

class EditingMeanAct:
    """Computes and stores the average and current value"""

    def __init__(self, min_a=1e9):
        self.reset(min_a=min_a)

    def reset(self, min_a=1e9):
        self.avg = 0
        self.count = 0
        self.sum = 0
        self.min_a = min_a

    def update(self, val):
        self.sum += val
        self.count += 1
        self.avg = self.sum / self.count
        self.min_a = min(self.min_a, val)

    def mean_act(self):
        return self.avg
    def min_act(self):
        return self.min_a

def get_context_templates(model, tok, length_params, device):
    global CONTEXT_TEMPLATES_CACHE

    if CONTEXT_TEMPLATES_CACHE is None:
        CONTEXT_TEMPLATES_CACHE = []
        prompt_tok = tok(
            ["I", "You", "Because", 'Yes', 'Q: '],
            padding=True,
            return_tensors="pt"
        ).to(device)
        for length, n_gen in length_params: 

            gen_token = model.generate(
                input_ids=prompt_tok['input_ids'],
                attention_mask=prompt_tok['attention_mask'],
                max_new_tokens=length,
                num_beams=n_gen // 5,
                num_return_sequences=n_gen // 5,
                pad_token_id=tok.eos_token_id,
            )
            CONTEXT_TEMPLATES_CACHE += tok.batch_decode(gen_token, skip_special_tokens=True)
        CONTEXT_TEMPLATES_CACHE = ['{}'] + [_ + ' {}' for _ in CONTEXT_TEMPLATES_CACHE]
    return CONTEXT_TEMPLATES_CACHE