File size: 12,340 Bytes
a0a66d7
06a8327
 
 
 
 
 
 
a0a66d7
06a8327
57c3ee4
 
06a8327
 
 
 
57c3ee4
 
06a8327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bc744
06a8327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b5e3c
6dd01fc
 
06a8327
 
 
 
6dd01fc
 
 
 
90b5e3c
0f1ad79
 
3124969
8fa6796
d35c449
8fa6796
6dd01fc
0f1ad79
42a5ea2
d35c449
8fa6796
90b5e3c
aaf6558
3124969
f58c303
90b5e3c
 
 
6dd01fc
 
3fae30f
 
3124969
6dd01fc
06a8327
3fae30f
6dd01fc
2c36eb0
6fc1c67
 
6dd01fc
f889cdb
06a8327
 
6fc1c67
f889cdb
 
 
 
3124969
06a8327
6dd01fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
from collections import defaultdict
from transformers import BertTokenizer, BertForMaskedLM
import jsonlines
import torch
from src.modeling_bert import EXBertForMaskedLM
from higher.patch import monkeypatch as make_functional
# from src.models.one_shot_learner import OneShotLearner

### load KGE model
edit_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Edit_Test")
edit_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Edit_Test")

edit_learner = torch.load("./learner_checkpoint/edit/learner_params.pt", map_location=torch.device('cpu'))
add_learner = torch.load("./learner_checkpoint/add/learner_params.pt", map_location=torch.device('cpu'))

add_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Add_Test")
add_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="ChancesYuan/KGEditor_Add_Test")

### init inputs
ent_name2id = defaultdict(str)
id2ent_name = defaultdict(str)
rel_name2id = defaultdict(str)
id2ent_text = defaultdict(str)
id2rel_text = defaultdict(str)
corrupt_triple = defaultdict(list)

### init tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
add_tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path='zjunlp/KGEditor', subfolder="E-FB15k237")

def init_triple_input():
    global ent2token
    global ent2id
    global id2ent
    global rel2token

    with open("./dataset/fb15k237/relations.txt", "r") as f:
        lines = f.readlines()
        relations = []
        for line in lines:
            relations.append(line.strip().split('\t')[0])

        rel2token = {ent: f"[RELATION_{i}]" for i, ent in enumerate(relations)}
        
    with open("./dataset/fb15k237/entity2text.txt", "r") as f:
        for line in f.readlines():
            id, name = line.rstrip('\n').split('\t')
            ent_name2id[name] = id
            id2ent_name[id] = name

    with open("./dataset/fb15k237/relation2text.txt", "r") as f:
        for line in f.readlines():
            id, name = line.rstrip('\n').split('\t')
            rel_name2id[name] = id
            id2rel_text[id] = name

    with open("./dataset/fb15k237/entity2textlong.txt", "r") as f:
        for line in f.readlines():
            id, text = line.rstrip('\n').split('\t')
            id2ent_text[id] = text.replace("\\n", " ").replace("\\", "")

        entities = list(id2ent_text.keys())
        ent2token = {ent: f"[ENTITY_{i}]" for i, ent in enumerate(entities)}
        ent2id = {ent: i for i, ent in enumerate(entities)}
        id2ent = {i: ent for i, ent in enumerate(entities)}

    with jsonlines.open("./dataset/fb15k237/edit_test.jsonl") as f:
        lines = []
        for d in f:
            corrupt_triple[" ".join(d["ori"])] = d["cor"]

def solve(triple, alter_label, edit_task):
    print(triple, alter_label)
    h, r, t = triple.split("|")
    if h == "[MASK]":
        text_a = "[MASK]"
        text_b = id2rel_text[r] + " " + rel2token[r]
        text_c = ent2token[ent_name2id[t]] + " " + id2ent_text[ent_name2id[t]]
        origin_label = corrupt_triple[" ".join([ent_name2id[alter_label], r, ent_name2id[t]])][0] if edit_task else ent_name2id[alter_label]
    else:
        text_a = ent2token[ent_name2id[h]]
        # text_b = id2rel_text[r] + "[PAD]"
        text_b = id2rel_text[r] + " " + rel2token[r]
        text_c = "[MASK]" + " " + id2ent_text[ent_name2id[h]]
        origin_label = corrupt_triple[" ".join([ent_name2id[h], r, ent_name2id[alter_label]])][2] if edit_task else ent_name2id[alter_label]

    if text_a == "[MASK]":
        input_text_a = tokenizer.sep_token.join(["[MASK]", id2rel_text[r] + "[PAD]"])
        input_text_b = "[PAD]" + " " + id2ent_text[ent_name2id[t]]
    else:
        input_text_a = "[PAD] "
        input_text_b = tokenizer.sep_token.join([id2rel_text[r] + "[PAD]", "[MASK]" + " " + id2ent_text[ent_name2id[h]]])
    
    cond_inputs_text = "{} >> {} || {}".format(
        add_tokenizer.added_tokens_decoder[ent2id[origin_label] + len(tokenizer)],
        add_tokenizer.added_tokens_decoder[ent2id[ent_name2id[alter_label]] + len(tokenizer)],
        input_text_a + input_text_b
    )

    inputs = tokenizer(
        f"{text_a} [SEP] {text_b} [SEP] {text_c}",
        truncation="longest_first",
        max_length=64,
        padding="longest",
        add_special_tokens=True,
    )

    edit_inputs = tokenizer(
        input_text_a,
        input_text_b,
        truncation="longest_first",
        max_length=64,
        padding="longest",
        add_special_tokens=True,
    )

    cond_inputs = tokenizer(
        cond_inputs_text,
        truncation=True,
        max_length=64,
        padding="max_length",
        add_special_tokens=True,
    )

    inputs = {
        "input_ids": torch.tensor(inputs["input_ids"]).unsqueeze(dim=0),
        "attention_mask": torch.tensor(inputs["attention_mask"]).unsqueeze(dim=0),
        "token_type_ids": torch.tensor(inputs["token_type_ids"]).unsqueeze(dim=0)
    }

    edit_inputs = {
        "input_ids": torch.tensor(edit_inputs["input_ids"]).unsqueeze(dim=0),
        "attention_mask": torch.tensor(edit_inputs["attention_mask"]).unsqueeze(dim=0),
        "token_type_ids": torch.tensor(edit_inputs["token_type_ids"]).unsqueeze(dim=0)
    }

    cond_inputs = {
        "input_ids": torch.tensor(cond_inputs["input_ids"]).unsqueeze(dim=0),
        "attention_mask": torch.tensor(cond_inputs["attention_mask"]).unsqueeze(dim=0),
        "token_type_ids": torch.tensor(cond_inputs["token_type_ids"]).unsqueeze(dim=0)
    }

    return inputs, cond_inputs, edit_inputs

def get_logits_orig_params_dict(inputs, cond_inputs, alter_label, ex_model, learner):
    with torch.enable_grad():
        logits = ex_model.eval()(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
        ).logits
        # print(logits.shape)
        # logits_orig, logit_for_grad, _ = logits.split([
        #     len(inputs["input_ids"]) - 1,
        #     1,
        #     0,
        # ])
        input_ids = inputs['input_ids']
        _, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)
        mask_logits = logits[:, mask_idx, 30522:45473].squeeze(dim=0)
        
        grads = torch.autograd.grad(
            # cross_entropy
            torch.nn.functional.cross_entropy(
                mask_logits[-1:, :],
                torch.tensor([alter_label]),
                reduction="none",
            ).mean(-1),
            ex_model.parameters(),
        )

    grads = {
        name: grad
        for (name, _), grad in zip(ex_model.named_parameters(), grads)
    }

    # cond_inputs里面有pad
    params_dict = learner(
        cond_inputs["input_ids"][-1:],
        cond_inputs["attention_mask"][-1:],
        grads=grads,
    )

    return params_dict

def edit_process(edit_input, alter_label):
    inputs, cond_inputs, edit_inputs = solve(edit_input, alter_label, edit_task=True)

    _, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)
    logits = edit_origin_model(**inputs).logits[:, :, 30522:45473].squeeze()
    logits = logits[mask_idx, :]

    ### origin output
    _, origin_entity_order = torch.sort(logits, dim=1, descending=True)
    origin_entity_order = origin_entity_order.squeeze(dim=0)
    origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)]

    ### edit output
    fmodel = make_functional(edit_ex_model).eval()
    params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], edit_ex_model, edit_learner)
    edit_logits = fmodel(
        input_ids=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        # add delta theta
        params=[
            params_dict.get(n, 0) + p
            for n, p in edit_ex_model.named_parameters()
        ],
    ).logits[:, :, 30522:45473].squeeze()
    
    edit_logits = edit_logits[mask_idx, :]
    _, edit_entity_order = torch.sort(edit_logits, dim=1, descending=True)
    edit_entity_order = edit_entity_order.squeeze(dim=0)
    edit_top3 = [id2ent_name[id2ent[edit_entity_order[i].item()]] for i in range(3)]

    return "\n".join(origin_top3), "\n".join(edit_top3)

def add_process(edit_input, alter_label):
    inputs, cond_inputs, add_inputs = solve(edit_input, alter_label, edit_task=False)

    _, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)
    logits = add_origin_model(**inputs).logits[:, :, 30522:45473].squeeze()
    logits = logits[mask_idx, :]

    ### origin output
    _, origin_entity_order = torch.sort(logits, dim=1, descending=True)
    origin_entity_order = origin_entity_order.squeeze(dim=0)
    origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)]

    ### add output
    fmodel = make_functional(add_ex_model).eval()
    params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], add_ex_model, add_learner)
    add_logits = fmodel(
        input_ids=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        # add delta theta
        params=[
            params_dict.get(n, 0) + p
            for n, p in add_ex_model.named_parameters()
        ],
    ).logits[:, :, 30522:45473].squeeze()
    
    add_logits = add_logits[mask_idx, :]
    _, add_entity_order = torch.sort(add_logits, dim=1, descending=True)
    add_entity_order = add_entity_order.squeeze(dim=0)
    add_top3 = [id2ent_name[id2ent[add_entity_order[i].item()]] for i in range(3)]

    return "\n".join(origin_top3), "\n".join(add_top3)


with gr.Blocks() as demo:
    init_triple_input()
    ### example
    # edit_process("[MASK]|/people/person/profession|Jack Black", "Kellie Martin")
    add_process("Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs")
    gr.Markdown("# KGE Editing")

    # 多个tab
    with gr.Tabs():
        with gr.TabItem("E-FB15k237"):
            with gr.Row():
                with gr.Column():
                    edit_input = gr.Textbox(label="Input", lines=1, placeholder="Mask triple input")

                    alter_label = gr.Textbox(label="Alter Entity", lines=1, placeholder="Entity Name")    
                    edit_button = gr.Button("Edit")

                with gr.Column():
                    origin_output = gr.Textbox(label="Before Edit", lines=3, placeholder="")
                    edit_output = gr.Textbox(label="After Edit", lines=3, placeholder="")
       
            gr.Examples(
                examples=[["[MASK]|/people/person/profession|Jack Black", "Kellie Martin"], ["Jay-Z|/people/person/spouse_s./people/marriage/type_of_union|[MASK]", "Sydney Pollack"]],
                inputs=[edit_input, alter_label],
                outputs=[origin_output, edit_output],
                fn=edit_process,
                cache_examples=True,
            )

        with gr.TabItem("A-FB15k237"):
            with gr.Row():
                with gr.Column():
                    add_input = gr.Textbox(label="Input", lines=1, placeholder="New triple input")

                    inductive_entity = gr.Textbox(label="Inductive Entity", lines=1, placeholder="Entity Name")
                    add_button = gr.Button("Add")

                with gr.Column():
                    add_origin_output = gr.Textbox(label="Origin Results", lines=3, placeholder="")
                    add_output = gr.Textbox(label="Add Results", lines=3, placeholder="")

            gr.Examples(
                examples=[["Jane Wyman|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"], ["Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"]],
                inputs=[add_input, inductive_entity],
                outputs=[add_origin_output, add_output],
                fn=add_process,
                cache_examples=True,
            )

    edit_button.click(fn=edit_process, inputs=[edit_input, alter_label], outputs=[origin_output, edit_output])
    add_button.click(fn=add_process, inputs=[add_input, inductive_entity], outputs=[add_origin_output, add_output])

demo.launch()