File size: 6,429 Bytes
89a31dd
63b2df0
89a31dd
 
 
 
63b2df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66877e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a31dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66877e4
89a31dd
 
66877e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
#from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#from new_chat import Conversation, ChatgptAPI


from pathlib import Path
from openai import OpenAI

class ChatgptAPI:
    def __init__(self, ):
        self.client = OpenAI(
            api_key = "sk-u8YI0ArRHFRRdMEdboouRAXVc3PpR6EhZOfxO4tST5Ua9147",
            base_url = "https://api.moonshot.cn/v1",
        )
    def get_single_round_completion(self, file_path, prompt, conversation):
        file_object = client.files.create(file=Path(file_path), purpose="file-extract")
        file_content = client.files.content(file_id=file_object.id).text
        messages = [
            {
                "role": "system",
                "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。",
            },
            {
                "role": "system",
                "content": file_content,
            },
            {"role": "user", "content": prompt},
        ]
        completion = self.client.chat.completions.create(
            model="moonshot-v1-32k",
            messages=messages,
            temperature=0.3,
        )
        return completion.choices[0].message
        
    
    def get_multi_round_completion(self, prompt, conversation, model='gpt-3.5-turbo'):
        conversation.append_question(prompt)
        prompts = conversation.get_prompts()

        response = openai.ChatCompletion.create(
            model=model,
            messages=prompts,
            temperature=0,
            max_tokens=2048,
            top_p=1,
        )
        message = response.choices[0].message['content']
        conversation.append_answer(message)

        return message, conversation

class Conversation:
    def __init__(self, system_prompt='', num_of_round = 5):
        self.num_of_round = num_of_round
        self.history = []
        self.initialized = False
        self.history.append({"role": "system", "content": system_prompt})

        if len(system_prompt) > 0:
            logger.info(f'Conversation initialized with system prompt: {system_prompt}')
            self.initialized = True

    def is_initialized(self):
        return self.initialized
    
    def append_question(self, question):
        self.history.append({"role": "user", "content": question})

    def append_answer(self, answer):
        self.history.append({"role": "assistant", "content": answer})

        if len(self.history) > self.num_of_round * 2:
            del self.history[1:3]

    def clear(self):
        self.history.clear()
        self.initialized = False

    def get_prompts(self):
        return self.history
    
    def round_size(self):
        return 0 if len(self.history) < 2 else len(self.hitory) - 1
    
    def get_history_messages(self):
        return [(u['content'], b['content']) for u,b in zip(self.history[1::2], self.history[2::2])]



chat_api = ChatgptAPI()

def predict(system_input, password_input, user_in_file, user_input, conversation):
    if password_input != '112233':
       return [(None, "Wrong password!")], conversation, user_input

    if conversation.is_initialized() == False:
        conversation = Conversation(system_input, 5)
    conversation = chat_api.get_single_round_completion(user_in_file, user_input, conversation)
    return conversation, conversation, None
    #_, conversation = chat_api.get_multi_round_completion(user_input, conversation)
    #return conversation.get_history_messages(), conversation, None


def clear_history(conversation):
    conversation.clear()
    return None, conversation


with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:600px}") as demo:
    chatbot = gr.Chatbot(elem_id="chatbot")
    conversation = gr.State(value=Conversation())

    with gr.Row():
        system_in_txt = gr.Textbox(lines=1, label="System role content:", placeholder="Enter system role content")
        password_in_txt = gr.Textbox(lines=1, label="Password:", placeholder="Enter password")
       
    with gr.Row():
        user_in_file = gr.File(label="Upload File")
        user_in_txt = gr.Textbox(lines=3, label="User role content:", placeholder="Enter text...").style(container=False)
    
    with gr.Row():
        submit_button = gr.Button("Submit")
        reset_button = gr.Button("Reset")
    
    submit_button.click(predict, [system_in_txt, password_in_txt, user_in_file, user_in_txt, conversation], [chatbot, conversation, user_in_txt])
    reset_button.click(clear_history, [conversation], [chatbot, conversation], queue=False)

'''
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
'''

if __name__ == "__main__":
    demo.launch()