test / app.py
zhaokeyao1
Update model
1641647
raw
history blame
6.47 kB
import gradio as gr
#from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#from new_chat import Conversation, ChatgptAPI
import os
from pathlib import Path
from openai import OpenAI
class ChatgptAPI:
def __init__(self, ):
self.client = OpenAI(
api_key = os.environ.get("OPENAI_API_KEY"),
base_url = "https://api.moonshot.cn/v1",
)
def get_single_round_completion(self, file_path, prompt, conversation):
conversation.append_question(prompt)
file_object = self.client.files.create(file=Path(file_path), purpose="file-extract")
file_content = self.client.files.content(file_id=file_object.id).text
messages = [
{
"role": "system",
"content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。",
},
{
"role": "system",
"content": file_content,
},
{"role": "user", "content": prompt},
]
completion = self.client.chat.completions.create(
model="moonshot-v1-8k",
messages=messages,
temperature=0.3,
)
message=completion.choices[0].message.content
conversation.append_answer(message)
return message, conversation
def get_multi_round_completion(self, prompt, conversation, model='gpt-3.5-turbo'):
conversation.append_question(prompt)
prompts = conversation.get_prompts()
response = openai.ChatCompletion.create(
model=model,
messages=prompts,
temperature=0,
max_tokens=2048,
top_p=1,
)
message = response.choices[0].message['content']
conversation.append_answer(message)
return message, conversation
class Conversation:
def __init__(self, system_prompt='iii', num_of_round = 5):
self.num_of_round = num_of_round
self.history = []
self.initialized = False
self.history.append({"role": "system", "content": system_prompt})
if len(system_prompt) > 0:
#logger.info(f'Conversation initialized with system prompt: {system_prompt}')
self.initialized = True
def is_initialized(self):
return self.initialized
def append_question(self, question):
self.history.append({"role": "user", "content": question})
def append_answer(self, answer):
self.history.append({"role": "assistant", "content": answer})
if len(self.history) > self.num_of_round * 2:
del self.history[1:3]
def clear(self):
self.history.clear()
self.initialized = False
def get_prompts(self):
return self.history
def round_size(self):
return 0 if len(self.history) < 2 else len(self.hitory) - 1
def get_history_messages(self):
return [(u['content'], b['content']) for u,b in zip(self.history[1::2], self.history[2::2])]
chat_api = ChatgptAPI()
def predict(system_input, password_input, user_in_file, user_input, conversation):
if password_input != os.environ.get("USER_KEY"):
return [(None, "Wrong password!")], conversation, user_input
if conversation.is_initialized() == False:
conversation = Conversation(system_input, 5)
_, conversation = chat_api.get_single_round_completion(user_in_file, user_input, conversation)
return conversation.get_history_messages(), conversation, None
#_, conversation = chat_api.get_multi_round_completion(user_input, conversation)
#return conversation.get_history_messages(), conversation, None
def clear_history(conversation):
conversation.clear()
return None, conversation
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:600px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
conversation = gr.State(value=Conversation())
with gr.Row():
system_in_txt = gr.Textbox(lines=1, label="System role content:", placeholder="Enter system role content")
password_in_txt = gr.Textbox(lines=1, label="Password:", placeholder="Enter password")
with gr.Row():
user_in_file = gr.File(label="Upload File")
user_in_txt = gr.Textbox(lines=3, label="User role content:", placeholder="Enter text...", container=False)
with gr.Row():
reset_button = gr.Button("Reset")
submit_button = gr.Button("Submit")
submit_button.click(predict, [system_in_txt, password_in_txt, user_in_file, user_in_txt, conversation], [chatbot, conversation, user_in_txt])
reset_button.click(clear_history, [conversation], [chatbot, conversation], queue=False)
'''
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
'''
if __name__ == "__main__":
demo.launch()