|
import gradio as gr |
|
|
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from openai import OpenAI |
|
|
|
class ChatgptAPI: |
|
def __init__(self, ): |
|
self.client = OpenAI( |
|
api_key = os.environ.get("OPENAI_API_KEY"), |
|
base_url = "https://api.moonshot.cn/v1", |
|
) |
|
def get_single_round_completion(self, file_path, prompt, conversation): |
|
conversation.append_question(prompt) |
|
file_object = self.client.files.create(file=Path(file_path), purpose="file-extract") |
|
file_content = self.client.files.content(file_id=file_object.id).text |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。", |
|
}, |
|
{ |
|
"role": "system", |
|
"content": file_content, |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
completion = self.client.chat.completions.create( |
|
model="moonshot-v1-8k", |
|
messages=messages, |
|
temperature=0.3, |
|
) |
|
message=completion.choices[0].message.content |
|
conversation.append_answer(message) |
|
return message, conversation |
|
|
|
|
|
def get_multi_round_completion(self, prompt, conversation, model='gpt-3.5-turbo'): |
|
conversation.append_question(prompt) |
|
prompts = conversation.get_prompts() |
|
|
|
response = openai.ChatCompletion.create( |
|
model=model, |
|
messages=prompts, |
|
temperature=0, |
|
max_tokens=2048, |
|
top_p=1, |
|
) |
|
message = response.choices[0].message['content'] |
|
conversation.append_answer(message) |
|
|
|
return message, conversation |
|
|
|
class Conversation: |
|
def __init__(self, system_prompt='iii', num_of_round = 5): |
|
self.num_of_round = num_of_round |
|
self.history = [] |
|
self.initialized = False |
|
self.history.append({"role": "system", "content": system_prompt}) |
|
|
|
if len(system_prompt) > 0: |
|
|
|
self.initialized = True |
|
|
|
def is_initialized(self): |
|
return self.initialized |
|
|
|
def append_question(self, question): |
|
self.history.append({"role": "user", "content": question}) |
|
|
|
def append_answer(self, answer): |
|
self.history.append({"role": "assistant", "content": answer}) |
|
|
|
if len(self.history) > self.num_of_round * 2: |
|
del self.history[1:3] |
|
|
|
def clear(self): |
|
self.history.clear() |
|
self.initialized = False |
|
|
|
def get_prompts(self): |
|
return self.history |
|
|
|
def round_size(self): |
|
return 0 if len(self.history) < 2 else len(self.hitory) - 1 |
|
|
|
def get_history_messages(self): |
|
return [(u['content'], b['content']) for u,b in zip(self.history[1::2], self.history[2::2])] |
|
|
|
|
|
|
|
chat_api = ChatgptAPI() |
|
|
|
def predict(system_input, password_input, user_in_file, user_input, conversation): |
|
if password_input != os.environ.get("USER_KEY"): |
|
return [(None, "Wrong password!")], conversation, user_input |
|
|
|
if conversation.is_initialized() == False: |
|
conversation = Conversation(system_input, 5) |
|
_, conversation = chat_api.get_single_round_completion(user_in_file, user_input, conversation) |
|
return conversation.get_history_messages(), conversation, None |
|
|
|
|
|
|
|
|
|
def clear_history(conversation): |
|
conversation.clear() |
|
return None, conversation |
|
|
|
|
|
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:600px}") as demo: |
|
chatbot = gr.Chatbot(elem_id="chatbot") |
|
conversation = gr.State(value=Conversation()) |
|
|
|
with gr.Row(): |
|
system_in_txt = gr.Textbox(lines=1, label="System role content:", placeholder="Enter system role content") |
|
password_in_txt = gr.Textbox(lines=1, label="Password:", placeholder="Enter password") |
|
|
|
with gr.Row(): |
|
user_in_file = gr.File(label="Upload File") |
|
user_in_txt = gr.Textbox(lines=3, label="User role content:", placeholder="Enter text...", container=False) |
|
|
|
with gr.Row(): |
|
reset_button = gr.Button("Reset") |
|
submit_button = gr.Button("Submit") |
|
|
|
submit_button.click(predict, [system_in_txt, password_in_txt, user_in_file, user_in_txt, conversation], [chatbot, conversation, user_in_txt]) |
|
reset_button.click(clear_history, [conversation], [chatbot, conversation], queue=False) |
|
|
|
''' |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
''' |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|