import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ from new_chat import Conversation, ChatgptAPI chat_api = ChatgptAPI() def predict(system_input, password_input, user_in_file, user_input, conversation): if password_input != '112233': return [(None, "Wrong password!")], conversation, user_input if conversation.is_initialized() == False: conversation = Conversation(system_input, 5) conversation = chat_api.get_single_round_completion(user_in_file, user_input, conversation) return conversation, conversation, None #_, conversation = chat_api.get_multi_round_completion(user_input, conversation) #return conversation.get_history_messages(), conversation, None def clear_history(conversation): conversation.clear() return None, conversation with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:600px}") as demo: chatbot = gr.Chatbot(elem_id="chatbot") conversation = gr.State(value=Conversation()) with gr.Row(): system_in_txt = gr.Textbox(lines=1, label="System role content:", placeholder="Enter system role content") password_in_txt = gr.Textbox(lines=1, label="Password:", placeholder="Enter password") with gr.Row(): user_in_file = gr.File(label="Upload File") user_in_txt = gr.Textbox(lines=3, label="User role content:", placeholder="Enter text...").style(container=False) with gr.Row(): submit_button = gr.Button("Submit") reset_button = gr.Button("Reset") submit_button.click(predict, [system_in_txt, password_in_txt, user_in_file, user_in_txt, conversation], [chatbot, conversation, user_in_txt]) reset_button.click(clear_history, [conversation], [chatbot, conversation], queue=False) ''' client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) ''' if __name__ == "__main__": demo.launch()