File size: 18,228 Bytes
8bbef17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414fdff
8bbef17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49f83ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446



import os
import streamlit as st
import numpy as np
import fitz  # PyMuPDF
from ultralytics import YOLO
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from sklearn.decomposition import PCA
from langchain_openai import ChatOpenAI
import string
import re


# Load the trained model
model = YOLO("best.pt")
openai_api_key = os.environ.get("openai_api_key")

# Define the class indices for figures, tables, and text
figure_class_index = 4  # class index for figures
table_class_index = 3   # class index for tables

# Global variables to store embeddings and contents
global_embeddings = None
global_split_contents = None

def clean_text(text):
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def remove_references(text):
    reference_patterns = [
        r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b',
        r'\bWorks Cited\b', r'\bReference\b', r'\breference\b'
    ]
    lines = text.split('\n')
    for i, line in enumerate(lines):
        if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
            return '\n'.join(lines[:i])
    return text

def save_uploaded_file(uploaded_file):
    with open(uploaded_file.name, 'wb') as f:
        f.write(uploaded_file.getbuffer())
    return uploaded_file.name

def summarize_pdf(pdf_file_path, num_clusters=10):
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
    prompt = ChatPromptTemplate.from_template(
        """Could you please provide a concise and comprehensive summary of the given Contexts? 
        The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately. 
        Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section. 
        The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long. 
        example of summary:
        ## Summary:
        ## Key points:
        Contexts: {topic}"""
    )
    output_parser = StrOutputParser()
    chain = prompt | llm | output_parser

    loader = PyMuPDFLoader(pdf_file_path)
    docs = loader.load()
    full_text = "\n".join(doc.page_content for doc in docs)
    cleaned_full_text = remove_references(full_text)
    cleaned_full_text = clean_text(cleaned_full_text)

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0,separators=["\n\n", "\n",".", " "])
    split_contents = text_splitter.split_text(cleaned_full_text)
    embeddings = embeddings_model.embed_documents(split_contents)

    X = np.array(embeddings)
    kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings)
    cluster_centers = kmeans.cluster_centers_

    closest_point_indices = []
    for center in cluster_centers:
        distances = np.linalg.norm(embeddings - center, axis=1)
        closest_point_indices.append(np.argmin(distances))
    
    extracted_contents = [split_contents[idx] for idx in closest_point_indices]
    results = chain.invoke({"topic": ' '.join(extracted_contents)})

    summary_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
    summary_embeddings = embeddings_model.embed_documents(summary_sentences)
    extracted_embeddings = embeddings_model.embed_documents(extracted_contents)
    similarity_matrix = cosine_similarity(summary_embeddings, extracted_embeddings)

    cited_results = results
    relevant_sources = []
    source_mapping = {}
    sentence_to_source = {}
    similarity_threshold = 0.6

    for i, sentence in enumerate(summary_sentences):
        if sentence in sentence_to_source:
            continue
        max_similarity = max(similarity_matrix[i])
        if max_similarity >= similarity_threshold:
            most_similar_idx = np.argmax(similarity_matrix[i])
            if most_similar_idx not in source_mapping:
                source_mapping[most_similar_idx] = len(relevant_sources) + 1
                relevant_sources.append((most_similar_idx, extracted_contents[most_similar_idx]))
            citation_idx = source_mapping[most_similar_idx]
            citation = f"([Source {citation_idx}](#source-{citation_idx}))"
            cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
            sentence_to_source[sentence] = citation_idx
            cited_results = cited_results.replace(sentence, cited_sentence)
    
    sources_list = "\n\n## Sources:\n"
    for idx, (original_idx, content) in enumerate(relevant_sources):
        sources_list += f"""
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
</details>
"""
    cited_results += sources_list
    return cited_results

def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
    global global_embeddings, global_split_contents

    # Initialize models and embeddings
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
    prompt = ChatPromptTemplate.from_template(
        """Please provide a detailed and accurate answer to the given question based on the provided contexts. 
        Ensure that the answer is comprehensive and directly addresses the query. 
        If necessary, include relevant examples or details from the text.
        Question: {question}
        Contexts: {contexts}"""
    )
    output_parser = StrOutputParser()
    chain = prompt | llm | output_parser

    # Load and process the PDF if not already loaded
    if global_embeddings is None or global_split_contents is None:
        loader = PyMuPDFLoader(pdf_file_path)
        docs = loader.load()
        full_text = "\n".join(doc.page_content for doc in docs)
        cleaned_full_text = remove_references(full_text)
        cleaned_full_text = clean_text(cleaned_full_text)

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
        global_split_contents = text_splitter.split_text(cleaned_full_text)
        global_embeddings = embeddings_model.embed_documents(global_split_contents)

    # Embed the query and find the most relevant contexts
    query_embedding = embeddings_model.embed_query(query)
    similarity_scores = cosine_similarity([query_embedding], global_embeddings)[0]
    top_indices = np.argsort(similarity_scores)[-num_clusters:]
    relevant_contents = [global_split_contents[i] for i in top_indices]

    # Generate the answer using the LLM chain
    results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})

    # Split the answer into sentences and embed them
    answer_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
    answer_embeddings = embeddings_model.embed_documents(answer_sentences)
    relevant_embeddings = embeddings_model.embed_documents(relevant_contents)
    similarity_matrix = cosine_similarity(answer_embeddings, relevant_embeddings)

    # Map sentences to sources and create citations
    cited_results = results
    relevant_sources = []
    source_mapping = {}
    sentence_to_source = {}

    for i, sentence in enumerate(answer_sentences):
        if sentence in sentence_to_source:
            continue
        max_similarity = max(similarity_matrix[i])
        if max_similarity >= similarity_threshold:
            most_similar_idx = np.argmax(similarity_matrix[i])
            if most_similar_idx not in source_mapping:
                source_mapping[most_similar_idx] = len(relevant_sources) + 1
                relevant_sources.append((most_similar_idx, relevant_contents[most_similar_idx]))
            citation_idx = source_mapping[most_similar_idx]
            citation = f"<strong style='color:blue;'>[Source {citation_idx}]</strong>"            
            cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
            sentence_to_source[sentence] = citation_idx
            cited_results = cited_results.replace(sentence, cited_sentence)

    # Format the sources for markdown rendering
    sources_list = "\n\n## Sources:\n"
    for idx, (original_idx, content) in enumerate(relevant_sources):
        sources_list += f"""
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
</details>
"""
    cited_results += sources_list
    return cited_results


def infer_image_and_get_boxes(image, confidence_threshold=0.6):
    results = model.predict(image)
    boxes = [
        (int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
        for result in results for box in result.boxes
        if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
    ]
    return boxes

def crop_images_from_boxes(image, boxes, scale_factor):
    figures = []
    tables = []
    for (x1, y1, x2, y2, cls) in boxes:
        cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
        if cls == figure_class_index:
            figures.append(cropped_img)
        elif cls == table_class_index:
            tables.append(cropped_img)
    return figures, tables


def process_pdf(pdf_file_path):
    doc = fitz.open(pdf_file_path)
    all_figures = []
    all_tables = []
    low_dpi = 50
    high_dpi = 300
    scale_factor = high_dpi / low_dpi
    low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
    
    for page_num, low_res_pix in enumerate(low_res_pixmaps):
        low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
        boxes = infer_image_and_get_boxes(low_res_img)
        
        if boxes:
            high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi)
            high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
            figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor)
            all_figures.extend(figures)
            all_tables.extend(tables)
    
    return all_figures, all_tables

# Set the page configuration for a modern look

# Set the page configuration for a modern look
# Set the page configuration for a modern look
st.set_page_config(page_title="PDF Reading Assistant", page_icon="πŸ“„", layout="wide")

# Add some custom CSS for a modern look
st.markdown("""
    <style>
        /* Main background and padding */
        .main {
            background-color: #f8f9fa;
            padding: 2rem;
            font-family: 'Arial', sans-serif;
        }
        
        /* Section headers */
        .section-header {
            font-size: 2rem;
            font-weight: bold;
            color: #343a40;
            margin-top: 2rem;
            margin-bottom: 1rem;
            text-align: center;
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }

        /* Containers */
        .uploaded-file-container, .chat-container, .summary-container, .extract-container {
            padding: 2rem;
            background-color: #ffffff;
            border-radius: 10px;
            margin-bottom: 2rem;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
        }

        /* Buttons */
        .stButton>button {
            background-color: #007bff;
            color: white;
            padding: 0.6rem 1.2rem;
            border-radius: 5px;
            border: none;
            cursor: pointer;
            font-size: 1rem;
            transition: background-color 0.3s ease, transform 0.3s ease;
        }
        .stButton>button:hover {
            background-color: #0056b3;
            transform: translateY(-2px);
        }

        /* Chat messages */
        .chat-message {
            padding: 1rem;
            border-radius: 10px;
            margin-bottom: 1rem;
            font-size: 1rem;
            transition: all 0.3s ease;
            box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
        }
        .chat-message.user {
            background-color: #e6f7ff;
            border-left: 5px solid #007bff;
            text-align: left;
        }
        .chat-message.bot {
            background-color: #fff0f1;
            border-left: 5px solid #dc3545;
            text-align: left;
        }

        /* Input area */
        .input-container {
            display: flex;
            align-items: center;
            gap: 10px;
            margin-top: 1rem;
        }
        .input-container textarea {
            border: 2px solid #ccc;
            border-radius: 10px;
            padding: 10px;
            width: 100%;
            background-color: #fff;
            transition: border-color 0.3s ease;
            margin: 0;
            font-size: 1rem;
        }
        .input-container textarea:focus {
            border-color: #007bff;
            outline: none;
        }
        .input-container button {
            background-color: #007bff;
            color: white;
            padding: 0.6rem 1.2rem;
            border-radius: 5px;
            border: none;
            cursor: pointer;
            font-size: 1rem;
            transition: background-color 0.3s ease, transform 0.3s ease;
        }
        .input-container button:hover {
            background-color: #0056b3;
            transform: translateY(-2px);
        }

        /* Expander */
        .st-expander {
            border: none;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
            margin-bottom: 2rem;
        }

        /* Markdown elements */
        .stMarkdown {
            font-size: 1rem;
            color: #343a40;
            line-height: 1.6;
        }
        
        /* Titles and subtitles */
        .stTitle {
            color: #343a40;
            text-align: center;
            margin-bottom: 1rem;
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }
        .stSubtitle {
            color: #6c757d;
            text-align: center;
            margin-bottom: 1rem;
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }
    </style>
""", unsafe_allow_html=True)

# Streamlit interface
st.title("πŸ“„ PDF Reading Assistant")
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.")

uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
if uploaded_file:
    file_path = save_uploaded_file(uploaded_file)
    with st.container():
        st.markdown("<div class='section-header'>Extract Tables and Figures</div>", unsafe_allow_html=True)
        with st.expander("Click to Extract Tables and Figures", expanded=True):
            with st.container():
                extract_button = st.button("Extract")
                if extract_button:
                    figures, tables = process_pdf(file_path)
                    col1, col2 = st.columns(2)
                    with col1:
                        st.write("### Figures")
                        if figures:
                            for figure in figures:
                                st.image(figure, use_column_width=True)
                        else:
                            st.write("No figures found.")
                    with col2:
                        st.write("### Tables")
                        if tables:
                            for table in tables:
                                st.image(table, use_column_width=True)
                        else:
                            st.write("No tables found.")
    
    with st.container():
        st.markdown("<div class='section-header'>Get Summary</div>", unsafe_allow_html=True)
        with st.expander("Click to Generate Summary", expanded=True):
            with st.container():
                summary_button = st.button("Generate Summary")
                if summary_button:
                    summary = summarize_pdf(file_path)
                    st.markdown(summary, unsafe_allow_html=True)

    with st.container():
        st.markdown("<div class='section-header'>Chat with your PDF</div>", unsafe_allow_html=True)
        st.write("### Chat with your PDF")
        if 'chat_history' not in st.session_state:
            st.session_state['chat_history'] = []

        for chat in st.session_state['chat_history']:
            chat_user_class = "user" if chat["user"] else ""
            chat_bot_class = "bot" if chat["bot"] else ""
            st.markdown(f"<div class='chat-message {chat_user_class}'>{chat['user']}</div>", unsafe_allow_html=True)
            st.markdown(f"<div class='chat-message {chat_bot_class}'>{chat['bot']}</div>", unsafe_allow_html=True)

        with st.form(key="chat_form", clear_on_submit=True):
            user_input = st.text_area("Ask a question about the PDF:", key="user_input")
            submit_button = st.form_submit_button(label="Send")

            if submit_button and user_input:
                st.session_state['chat_history'].append({"user": user_input, "bot": None})
                answer = qa_pdf(file_path, user_input)
                st.session_state['chat_history'][-1]["bot"] = answer
                st.experimental_rerun()