Update pdfextract_fun.py
Browse files- pdfextract_fun.py +172 -61
pdfextract_fun.py
CHANGED
@@ -1,82 +1,193 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import cv2
|
|
|
5 |
import fitz # PyMuPDF
|
6 |
import numpy as np
|
|
|
7 |
import pytesseract
|
8 |
import torch
|
9 |
from PIL import Image
|
10 |
-
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
11 |
from detectron2.config import get_cfg
|
|
|
12 |
from detectron2.data import MetadataCatalog
|
13 |
from detectron2.engine import DefaultPredictor
|
14 |
-
from detectron2.utils.visualizer import ColorMode, Visualizer
|
15 |
-
from unilm.dit.object_detection.ditod import add_vit_config
|
16 |
|
17 |
-
# Filter specific warnings
|
18 |
-
warnings.filterwarnings("ignore", message="None of the inputs have requires_grad=True. Gradients will be None")
|
19 |
-
warnings.filterwarnings("ignore", message="torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument.")
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"""Analyze an image and return the result image, output, and visualizer."""
|
33 |
-
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
|
34 |
-
thing_classes = ["table"] if cfg.DATASETS.TEST[0] == 'icdar2019_test' else ["text", "title", "list", "table", "figure"]
|
35 |
-
md.set(thing_classes=thing_classes)
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
result = v.draw_instance_predictions(output.to("cpu"))
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
# PDF to JPEG conversion
|
43 |
def convert_pdf_to_jpg(pdf_path, output_folder, zoom_factor=2):
|
44 |
-
"""Convert PDF file to JPEG images, saved in the specified output folder."""
|
45 |
doc = fitz.open(pdf_path)
|
46 |
-
for page_num
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
pix.save(output_file)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
def save_extracted_instances(img, output, page_num, dest_folder, confidence_threshold=0.8):
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
instances = output.to("cpu")
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import warnings
|
2 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
+
import time
|
4 |
+
# Filter warnings about inputs not requiring gradients
|
5 |
+
warnings.filterwarnings("ignore", message="None of the inputs have requires_grad=True. Gradients will be None")
|
6 |
+
warnings.filterwarnings("ignore", message="torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument.")
|
7 |
+
|
8 |
import cv2
|
9 |
+
import os
|
10 |
import fitz # PyMuPDF
|
11 |
import numpy as np
|
12 |
+
import re
|
13 |
import pytesseract
|
14 |
import torch
|
15 |
from PIL import Image
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from unilm.dit.object_detection.ditod import add_vit_config
|
19 |
+
|
20 |
+
from detectron2.config import CfgNode as CN
|
21 |
from detectron2.config import get_cfg
|
22 |
+
from detectron2.utils.visualizer import ColorMode, Visualizer
|
23 |
from detectron2.data import MetadataCatalog
|
24 |
from detectron2.engine import DefaultPredictor
|
|
|
|
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
+
# Step 1: instantiate config
|
28 |
+
cfg = get_cfg()
|
29 |
+
add_vit_config(cfg)
|
30 |
+
cfg.merge_from_file("cascade_dit_base.yml")
|
31 |
+
|
32 |
+
# Step 2: add model weights URL to config
|
33 |
+
cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth"
|
34 |
+
|
35 |
+
# Step 3: set device
|
36 |
+
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
#cfg.MODEL.DEVICE = "cuda"
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Step 4: define model
|
40 |
+
predictor = DefaultPredictor(cfg)
|
41 |
+
|
42 |
+
def analyze_image(img):
|
43 |
+
|
44 |
+
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
|
45 |
+
if cfg.DATASETS.TEST[0]=='icdar2019_test':
|
46 |
+
md.set(thing_classes=["table"])
|
47 |
+
else:
|
48 |
+
md.set(thing_classes=["text","title","list","table","figure"])
|
49 |
+
|
50 |
+
output = predictor(img)["instances"]
|
51 |
+
v = Visualizer(img[:, :, ::-1],
|
52 |
+
md,
|
53 |
+
scale=1.0,
|
54 |
+
instance_mode=ColorMode.SEGMENTATION)
|
55 |
result = v.draw_instance_predictions(output.to("cpu"))
|
56 |
+
result_image = result.get_image()[:, :, ::-1]
|
57 |
+
|
58 |
+
return result_image, output, v
|
59 |
+
|
60 |
+
|
61 |
|
|
|
62 |
def convert_pdf_to_jpg(pdf_path, output_folder, zoom_factor=2):
|
|
|
63 |
doc = fitz.open(pdf_path)
|
64 |
+
for page_num in range(len(doc)):
|
65 |
+
page = doc.load_page(page_num)
|
66 |
+
|
67 |
+
# Adjust zoom factor for higher resolution
|
68 |
+
mat = fitz.Matrix(zoom_factor, zoom_factor) # Create a Matrix with the zoom factor
|
69 |
+
pix = page.get_pixmap(matrix=mat) # Render the page using the matrix
|
70 |
+
|
71 |
+
output_file = f"{output_folder}/page_{page_num}.jpg"
|
72 |
pix.save(output_file)
|
73 |
|
74 |
+
|
75 |
+
|
76 |
+
def process_jpeg_images(output_folder):
|
77 |
+
for page_num in tqdm(range(len(os.listdir(output_folder))), desc="Processing the pdf"):
|
78 |
+
file_path = f"{output_folder}/page_{page_num}.jpg"
|
79 |
+
img = cv2.imread(file_path)
|
80 |
+
if img is None:
|
81 |
+
print(f"Failed to read {file_path}. Skipping.")
|
82 |
+
continue
|
83 |
+
result_image, output, v = analyze_image(img)
|
84 |
+
|
85 |
+
# Saving logic
|
86 |
+
save_extracted_instances(img, output, page_num,output_folder)
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
def save_extracted_instances(img, output, page_num, dest_folder, confidence_threshold=0.8):
|
91 |
+
class_names = {
|
92 |
+
0: "text",
|
93 |
+
1: "title",
|
94 |
+
2: "list",
|
95 |
+
3: "table",
|
96 |
+
4: "figure"
|
97 |
+
}
|
98 |
+
|
99 |
+
threshold_value = 0 # Standard deviation threshold
|
100 |
+
min_height = 0 # Minimum height threshold
|
101 |
+
|
102 |
instances = output.to("cpu")
|
103 |
+
boxes = instances.pred_boxes.tensor.numpy()
|
104 |
+
class_ids = instances.pred_classes.tolist()
|
105 |
+
scores = instances.scores.tolist() # Get prediction scores
|
106 |
+
|
107 |
+
image_counter = 1
|
108 |
+
for box, class_id, score in zip(boxes, class_ids, scores):
|
109 |
+
# Check if the prediction score meets the confidence threshold
|
110 |
+
if score >= confidence_threshold:
|
111 |
+
class_name = class_names.get(class_id, "unknown")
|
112 |
+
|
113 |
+
# Save only if class is 'figure' or 'table'
|
114 |
+
if class_name in ["figure", "table","text"]:
|
115 |
+
x1, y1, x2, y2 = map(int, box)
|
116 |
+
cropped_image = img[y1:y2, x1:x2]
|
117 |
+
|
118 |
+
if np.std(cropped_image) > threshold_value and (y2 - y1) > min_height:
|
119 |
+
save_path = os.path.join(dest_folder, f"page_{page_num}_{class_name}_{image_counter}.jpg")
|
120 |
+
cv2.imwrite(save_path, cropped_image)
|
121 |
+
image_counter += 1
|
122 |
+
|
123 |
+
|
124 |
+
def delete_files_in_folder(folder_path):
|
125 |
+
for filename in os.listdir(folder_path):
|
126 |
+
file_path = os.path.join(folder_path, filename)
|
127 |
+
if os.path.isfile(file_path):
|
128 |
+
os.remove(file_path)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
def rename_files_sequentially(folder_path):
|
133 |
+
# Regex pattern to match 'page_{page_num}_{class_name}_{image_counter}.jpg'
|
134 |
+
pattern = re.compile(r'page_(\d+)_(\w+)_(\d+).jpg', re.IGNORECASE)
|
135 |
+
|
136 |
+
# List files in the folder
|
137 |
+
files = os.listdir(folder_path)
|
138 |
+
|
139 |
+
# Filter and sort files based on the regex pattern
|
140 |
+
sorted_files = sorted(
|
141 |
+
[f for f in files if pattern.match(f)],
|
142 |
+
key=lambda x: (int(pattern.match(x).group(1)), pattern.match(x).group(2).lower(), int(pattern.match(x).group(3)))
|
143 |
+
)
|
144 |
+
|
145 |
+
# Initialize an empty dictionary for counters
|
146 |
+
counters = {}
|
147 |
+
|
148 |
+
for filename in sorted_files:
|
149 |
+
match = pattern.match(filename)
|
150 |
+
if match:
|
151 |
+
page_num, class_name, _ = match.groups()
|
152 |
+
class_name = class_name.lower() # Convert class name to lowercase
|
153 |
+
|
154 |
+
# Initialize counter for this class if it doesn't exist
|
155 |
+
if class_name not in counters:
|
156 |
+
counters[class_name] = 1
|
157 |
+
|
158 |
+
# New filename format: '{class_name}_{sequential_number}.jpg'
|
159 |
+
new_filename = f"{class_name}_{counters[class_name]}.jpg"
|
160 |
+
counters[class_name] += 1
|
161 |
+
|
162 |
+
# Rename the file
|
163 |
+
os.rename(os.path.join(folder_path, filename), os.path.join(folder_path, new_filename))
|
164 |
+
|
165 |
+
#print(f"Renamed '{filename}' to '{new_filename}'")
|
166 |
+
|
167 |
+
|
168 |
+
def ocr_folder(folder_path):
|
169 |
+
# Regex pattern to match 'text_{number}.jpg'
|
170 |
+
pattern = re.compile(r'text_\d+\.jpg', re.IGNORECASE)
|
171 |
+
|
172 |
+
# Create a subfolder for the OCR text files
|
173 |
+
ocr_text_folder = os.path.join(folder_path, "ocr_results")
|
174 |
+
if not os.path.exists(ocr_text_folder):
|
175 |
+
os.makedirs(ocr_text_folder)
|
176 |
+
|
177 |
+
for filename in os.listdir(folder_path):
|
178 |
+
if pattern.match(filename):
|
179 |
+
image_path = os.path.join(folder_path, filename)
|
180 |
+
text = ocr_image(image_path)
|
181 |
+
|
182 |
+
# Save the OCR result to a text file in the subfolder
|
183 |
+
text_file_name = filename.replace('.jpg', '.txt')
|
184 |
+
text_file_path = os.path.join(ocr_text_folder, text_file_name)
|
185 |
+
with open(text_file_path, 'w') as file:
|
186 |
+
file.write(text)
|
187 |
+
|
188 |
+
#print(f"OCR result for {filename} saved to {text_file_path}\n")
|
189 |
+
|
190 |
+
def ocr_image(image_path):
|
191 |
+
image = Image.open(image_path)
|
192 |
+
text = pytesseract.image_to_string(image)
|
193 |
+
return text
|