import os import re import warnings import cv2 import fitz # PyMuPDF import numpy as np import pytesseract import torch from PIL import Image from tqdm import tqdm from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor from detectron2.utils.visualizer import ColorMode, Visualizer from unilm.dit.object_detection.ditod import add_vit_config # Filter specific warnings warnings.filterwarnings("ignore", message="None of the inputs have requires_grad=True. Gradients will be None") warnings.filterwarnings("ignore", message="torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument.") # Configuration setup def setup_config(): cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file("cascade_dit_base.yml") cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth" cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" return cfg # Analyze image def analyze_image(img, cfg): """Analyze an image and return the result image, output, and visualizer.""" md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) thing_classes = ["table"] if cfg.DATASETS.TEST[0] == 'icdar2019_test' else ["text", "title", "list", "table", "figure"] md.set(thing_classes=thing_classes) output = DefaultPredictor(cfg)(img)["instances"] v = Visualizer(img[:, :, ::-1], metadata=md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) result = v.draw_instance_predictions(output.to("cpu")) return result.get_image()[:, :, ::-1], output, v # PDF to JPEG conversion def convert_pdf_to_jpg(pdf_path, output_folder, zoom_factor=2): """Convert PDF file to JPEG images, saved in the specified output folder.""" doc = fitz.open(pdf_path) for page_num, page in enumerate(doc): mat = fitz.Matrix(zoom_factor, zoom_factor) pix = page.get_pixmap(matrix=mat) output_file = os.path.join(output_folder, f"page_{page_num}.jpg") pix.save(output_file) # Process JPEG images in a folder def process_jpeg_images((output_folder, cfg, batch_size=10): image_paths = [os.path.join(output_folder, f) for f in os.listdir(output_folder) if f.endswith('.jpg')] batches = [image_paths[i:i + batch_size] for i in range(0, len(image_paths), batch_size)] for batch in tqdm(batches, desc="Processing images in batches"): images = [cv2.imread(image_path) for image_path in batch] batch_results = batch_analyze_images(images, cfg) # This function needs to be implemented to support batch processing for i, (result_image, output, v) in enumerate(batch_results): # Assuming batch_analyze_images returns a list of tuples, each containing the results for one image save_extracted_instances(images[i], output, i, output_folder) # Save extracted instances def save_extracted_instances(img, output, page_num, dest_folder, confidence_threshold=0.8): """Save instances extracted from an image to the destination folder.""" class_names = {0: "text", 1: "title", 2: "list", 3: "table", 4: "figure"} instances = output.to("cpu") for i, (box, class_id, score) in enumerate(zip(instances.pred_boxes.tensor.numpy(), instances.pred_classes.tolist(), instances.scores.tolist())): if score >= confidence_threshold and class_names.get(class_id) in ["figure", "table", "text"]: x1, y1, x2, y2 = map(int, box) cropped_image = img[y1:y2, x1:x2] if np.std(cropped_image) > 0 and (y2 - y1) > 0: # Replace with actual thresholds if needed save_path = os.path.join(dest_folder, f"page_{page_num}_{class_names[class_id]}_{i + 1}.jpg") cv2.imwrite(save_path, cropped_image) # Additional functions like delete_files_in_folder, rename_files_sequentially, ocr_folder, and ocr_image can be included as is, assuming they were satisfactory before. cfg = setup_config() # Example usage convert_pdf_to_jpg("sample.pdf", "output_folder") process_jpeg_images("output_folder", cfg)