Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
#import spaces | |
# Load the trained model | |
model_path = 'best.pt' # Replace with the path to your trained .pt file | |
model = YOLO(model_path) | |
# Function to perform inference on an image | |
#@spaces.GPU | |
def infer_image(image): | |
# Convert the image from BGR to RGB | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Perform inference | |
results = model(image_rgb) | |
# Extract results and annotate image | |
for result in results: | |
for box in result.boxes: | |
x1, y1, x2, y2 = box.xyxy[0] | |
cls = int(box.cls[0]) | |
conf = float(box.conf[0]) | |
# Draw bounding box | |
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) | |
# Draw label | |
label = f'{model.names[cls]} {conf:.2f}' | |
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
return image | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=infer_image, | |
inputs=gr.Image(type="numpy", label="Upload an Image"), | |
outputs=gr.Image(type="numpy", label="Annotated Image"), | |
title="Fast document layout analysis based on YOLOv8", | |
description="Upload an image to get document layout analysis results." | |
) | |
# Launch the app | |
iface.launch() | |