fastpaperlayout / app.py
zliang's picture
Rename app2.py to app.py
f662962 verified
raw
history blame
2.82 kB
import gradio as gr
from ultralytics import YOLO
import fitz # PyMuPDF
from PIL import Image
import numpy as np
import cv2
import io
# Load the trained YOLOv8 model
model_path = 'best.pt' # Replace with the path to your trained .pt file
model = YOLO(model_path)
# Function to extract images from PDF
def extract_images_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
images = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
for img_num, img in enumerate(page.get_images(full=True)):
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
images.append(image)
return images
# Placeholder function to extract tables (modify as needed)
def extract_tables_from_pdf(pdf_path):
# Dummy implementation; replace with actual table extraction logic
return ["Table extraction not implemented"]
# Function to perform inference on an image
def infer_image(image):
# Convert the image to RGB (if not already in that format)
image_rgb = np.array(image.convert('RGB'))
# Perform inference
results = model(image_rgb)
# Annotate image
annotated_image = np.array(image_rgb)
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = box.xyxy[0]
cls = int(box.cls[0])
conf = float(box.conf[0])
# Draw bounding box
cv2.rectangle(annotated_image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
# Draw label
label = f'{model.names[cls]} {conf:.2f}'
cv2.putText(annotated_image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return annotated_image
# Gradio function to process PDF and return images and tables
def process_pdf(pdf):
# Extract images and tables from PDF
images = extract_images_from_pdf(pdf.name)
tables = extract_tables_from_pdf(pdf.name)
# Perform inference on extracted images
annotated_images = [infer_image(img) for img in images]
# Convert annotated images back to Image format for Gradio
annotated_images_pil = [Image.fromarray(img) for img in annotated_images]
# Return annotated images and tables
return annotated_images_pil, tables
# Create Gradio interface
iface = gr.Interface(
fn=process_pdf,
inputs=gr.File( label="Upload a PDF"),
outputs=[
gr.Gallery(label="Annotated Images"),
gr.Textbox(label="Extracted Tables")
],
title="PDF Image and Table Extraction with YOLOv8",
description="Upload a PDF to extract and annotate images and tables using YOLOv8."
)
# Launch the app
iface.launch()