Spaces:
Sleeping
Sleeping
Upload app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import io
|
8 |
+
|
9 |
+
# Load the trained YOLOv8 model
|
10 |
+
model_path = 'runs\\detect\\train6\\weights\\best.pt' # Replace with the path to your trained .pt file
|
11 |
+
model = YOLO(model_path)
|
12 |
+
|
13 |
+
# Function to extract images from PDF
|
14 |
+
def extract_images_from_pdf(pdf_path):
|
15 |
+
doc = fitz.open(pdf_path)
|
16 |
+
images = []
|
17 |
+
|
18 |
+
for page_num in range(len(doc)):
|
19 |
+
page = doc.load_page(page_num)
|
20 |
+
for img_num, img in enumerate(page.get_images(full=True)):
|
21 |
+
xref = img[0]
|
22 |
+
base_image = doc.extract_image(xref)
|
23 |
+
image_bytes = base_image["image"]
|
24 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
25 |
+
images.append(image)
|
26 |
+
return images
|
27 |
+
|
28 |
+
# Placeholder function to extract tables (modify as needed)
|
29 |
+
def extract_tables_from_pdf(pdf_path):
|
30 |
+
# Dummy implementation; replace with actual table extraction logic
|
31 |
+
return ["Table extraction not implemented"]
|
32 |
+
|
33 |
+
# Function to perform inference on an image
|
34 |
+
def infer_image(image):
|
35 |
+
# Convert the image to RGB (if not already in that format)
|
36 |
+
image_rgb = np.array(image.convert('RGB'))
|
37 |
+
|
38 |
+
# Perform inference
|
39 |
+
results = model(image_rgb)
|
40 |
+
|
41 |
+
# Annotate image
|
42 |
+
annotated_image = np.array(image_rgb)
|
43 |
+
for result in results:
|
44 |
+
for box in result.boxes:
|
45 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
46 |
+
cls = int(box.cls[0])
|
47 |
+
conf = float(box.conf[0])
|
48 |
+
|
49 |
+
# Draw bounding box
|
50 |
+
cv2.rectangle(annotated_image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
51 |
+
# Draw label
|
52 |
+
label = f'{model.names[cls]} {conf:.2f}'
|
53 |
+
cv2.putText(annotated_image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
54 |
+
|
55 |
+
return annotated_image
|
56 |
+
|
57 |
+
# Gradio function to process PDF and return images and tables
|
58 |
+
def process_pdf(pdf):
|
59 |
+
# Extract images and tables from PDF
|
60 |
+
images = extract_images_from_pdf(pdf.name)
|
61 |
+
tables = extract_tables_from_pdf(pdf.name)
|
62 |
+
|
63 |
+
# Perform inference on extracted images
|
64 |
+
annotated_images = [infer_image(img) for img in images]
|
65 |
+
|
66 |
+
# Convert annotated images back to Image format for Gradio
|
67 |
+
annotated_images_pil = [Image.fromarray(img) for img in annotated_images]
|
68 |
+
|
69 |
+
# Return annotated images and tables
|
70 |
+
return annotated_images_pil, tables
|
71 |
+
|
72 |
+
# Create Gradio interface
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=process_pdf,
|
75 |
+
inputs=gr.File( label="Upload a PDF"),
|
76 |
+
outputs=[
|
77 |
+
gr.Gallery(label="Annotated Images"),
|
78 |
+
gr.Textbox(label="Extracted Tables")
|
79 |
+
],
|
80 |
+
title="PDF Image and Table Extraction with YOLOv8",
|
81 |
+
description="Upload a PDF to extract and annotate images and tables using YOLOv8."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Launch the app
|
85 |
+
iface.launch()
|