import gradio as gr from ultralytics import YOLO import numpy as np import fitz # PyMuPDF import spaces # Load the trained model model_path = 'best.pt' # Replace with the path to your trained .pt file model = YOLO(model_path) # Define the class indices for figures and tables figure_class_index = 3 # class index for figures table_class_index = 4 # class index for tables # Function to perform inference on an image and return bounding boxes for figures and tables def infer_image_and_get_boxes(image, confidence_threshold=0.6): results = model(image) boxes = [ (int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3])) for result in results for box in result.boxes if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold ] return boxes # Function to crop images from the boxes def crop_images_from_boxes(image, boxes, scale_factor): cropped_images = [ image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)] for (x1, y1, x2, y2) in boxes ] return cropped_images @spaces.GPU def process_pdf(pdf_file, chunk_size=10): # Open the PDF file doc = fitz.open(pdf_file) all_cropped_images = [] # Set the DPI for inference and high resolution for cropping low_dpi = 50 high_dpi = 300 # Calculate the scaling factor scale_factor = high_dpi / low_dpi # Process the PDF in chunks num_pages = len(doc) for chunk_start in range(0, num_pages, chunk_size): chunk_end = min(chunk_start + chunk_size, num_pages) # Pre-cache page pixmaps at low DPI for the current chunk low_res_pixmaps = [doc.load_page(page_num).get_pixmap(dpi=low_dpi) for page_num in range(chunk_start, chunk_end)] # Process each page in the current chunk for page_num, low_res_pix in enumerate(low_res_pixmaps, start=chunk_start): low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3) # Get bounding boxes from low DPI image boxes = infer_image_and_get_boxes(low_res_img) if boxes: # Load high DPI image for cropping only if boxes are found high_res_pix = doc.load_page(page_num).get_pixmap(dpi=high_dpi) high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3) # Crop images at high DPI cropped_imgs = crop_images_from_boxes(high_res_img, boxes, scale_factor) all_cropped_images.extend(cropped_imgs) return all_cropped_images # Create Gradio interface iface = gr.Interface( fn=process_pdf, inputs=gr.File(label="Upload a PDF"), outputs=gr.Gallery(label="Cropped Figures and Tables from PDF Pages"), title="Fast document layout analysis based on YOLOv8", description="Upload a PDF file to get cropped figures and tables from each page." ) # Launch the app iface.launch()