zoheb commited on
Commit
f33940c
1 Parent(s): b221ab9

Add application file

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. app.py +125 -0
  3. labels.txt +35 -0
  4. test.jpg +0 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Segformer Demo
3
- emoji: 💩
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: gradio
 
1
  ---
2
  title: Segformer Demo
3
+ emoji: 💻
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from matplotlib import gridspec
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from torch import nn
6
+ from PIL import Image
7
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
8
+
9
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
10
+ model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
11
+
12
+ def sidewalk_palette():
13
+ """Sidewalk palette that maps each class to RGB values."""
14
+ return [
15
+ [0, 0, 0],
16
+ [216, 82, 24],
17
+ [255, 255, 0],
18
+ [125, 46, 141],
19
+ [118, 171, 47],
20
+ [161, 19, 46],
21
+ [255, 0, 0],
22
+ [0, 128, 128],
23
+ [190, 190, 0],
24
+ [0, 255, 0],
25
+ [0, 0, 255],
26
+ [170, 0, 255],
27
+ [84, 84, 0],
28
+ [84, 170, 0],
29
+ [84, 255, 0],
30
+ [170, 84, 0],
31
+ [170, 170, 0],
32
+ [170, 255, 0],
33
+ [255, 84, 0],
34
+ [255, 170, 0],
35
+ [255, 255, 0],
36
+ [33, 138, 200],
37
+ [0, 170, 127],
38
+ [0, 255, 127],
39
+ [84, 0, 127],
40
+ [84, 84, 127],
41
+ [84, 170, 127],
42
+ [84, 255, 127],
43
+ [170, 0, 127],
44
+ [170, 84, 127],
45
+ [170, 170, 127],
46
+ [170, 255, 127],
47
+ [255, 0, 127],
48
+ [255, 84, 127],
49
+ [255, 170, 127],
50
+ ]
51
+
52
+ labels_list = []
53
+
54
+ with open(r'labels.txt', 'r') as fp:
55
+ labels_list.extend(line[:-1] for line in fp)
56
+
57
+ colormap = np.asarray(sidewalk_palette())
58
+
59
+ def label_to_color_image(label):
60
+ if label.ndim != 2:
61
+ raise ValueError("Expect 2-D input label")
62
+
63
+ if np.max(label) >= len(colormap):
64
+ raise ValueError("label value too large.")
65
+
66
+ return colormap[label]
67
+
68
+ def draw_plot(pred_img, seg):
69
+ fig = plt.figure(figsize=(20, 15))
70
+
71
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
72
+
73
+ plt.subplot(grid_spec[0])
74
+ plt.imshow(pred_img)
75
+ plt.axis('off')
76
+
77
+ LABEL_NAMES = np.asarray(labels_list)
78
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
79
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
80
+
81
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
82
+ ax = plt.subplot(grid_spec[1])
83
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
84
+ ax.yaxis.tick_right()
85
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
86
+ plt.xticks([], [])
87
+ ax.tick_params(width=0.0, labelsize=25)
88
+ return fig
89
+
90
+ def main(input_img):
91
+ input_img = Image.fromarray(input_img)
92
+
93
+ inputs = feature_extractor(images=input_img, return_tensors="pt")
94
+ outputs = model(**inputs)
95
+ logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
96
+
97
+ # First, rescale logits to original image size
98
+ upsampled_logits = nn.functional.interpolate(
99
+ logits,
100
+ size=input_img.size[::-1], # (height, width)
101
+ mode='bilinear',
102
+ align_corners=False
103
+ )
104
+
105
+ # Second, apply argmax on the class dimension
106
+ pred_seg = upsampled_logits.argmax(dim=1)[0]
107
+
108
+ color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3
109
+ palette = np.array(sidewalk_palette())
110
+ for label, color in enumerate(palette):
111
+ color_seg[pred_seg == label, :] = color
112
+
113
+ # Show image + mask
114
+ img = np.array(input_img) * 0.5 + color_seg * 0.5
115
+ pred_img = img.astype(np.uint8)
116
+
117
+ return draw_plot(pred_img, pred_seg)
118
+
119
+ demo = gr.Interface(main,
120
+ gr.Image(shape=(200, 200)),
121
+ outputs=['plot'],
122
+ examples=["test.jpg"],
123
+ allow_flagging='never')
124
+
125
+ demo.launch()
labels.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ unlabeled
2
+ flat-road
3
+ flat-sidewalk
4
+ flat-crosswalk
5
+ flat-cyclinglane
6
+ flat-parkingdriveway
7
+ flat-railtrack
8
+ flat-curb
9
+ human-person
10
+ human-rider
11
+ vehicle-car
12
+ vehicle-truck
13
+ vehicle-bus
14
+ vehicle-tramtrain
15
+ vehicle-motorcycle
16
+ vehicle-bicycle
17
+ vehicle-caravan
18
+ vehicle-cartrailer
19
+ construction-building
20
+ construction-door
21
+ construction-wall
22
+ construction-fenceguardrail
23
+ construction-bridge
24
+ construction-tunnel
25
+ construction-stairs
26
+ object-pole
27
+ object-trafficsign
28
+ object-trafficlight
29
+ nature-vegetation
30
+ nature-terrain
31
+ sky
32
+ void-ground
33
+ void-dynamic
34
+ void-static
35
+ void-unclear
test.jpg ADDED