File size: 6,052 Bytes
c3b9937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Charger le modèle et le tokenizer
model_name = "MaziyarPanahi/BioMistral-7B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")

def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(inputs['input_ids'], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

def add_message(history, message):
    if message["text"] is not None:
        history.append((message["text"], None))
    for x in message["files"]:
        history.append(((x,), None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

def bot(history):
    if history and history[-1][0]:
        history[-1] = (history[-1][0], generate_response(history[-1][0]))
    return history

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

# Création de l'interface Gradio avec le fond animé et des boutons stylisés
with gr.Blocks(css="""

.gradio-container {
     background: url('https://st4.depositphotos.com/8211188/25405/v/450/depositphotos_254059962-stock-illustration-abstract-medical-background-with-flat.jpg')50% 50% no-repeat;
        background-size: cover;
               }
    .chatbox-container {
        max-width: 80%;
        margin: 20px auto;
        padding: 20px 20px;
        background-color: rgb(39 150 160);
        border-radius: 12px;
        box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
        display: flex;
        flex-direction: row;
        align-items: stretch;
    }

    .chatbox {
        flex: 1;
        overflow-y: auto;
        padding: 10px;
        display: flex;
        flex-direction: column;
        justify-content: flex-end;
        border-bottom: 1px solid #e39d05;
        height: 400px; 
    }
    
    .chat-input-container {
        display: flex;
        flex-direction: column;
        padding: 10px;
        border-top: 1px solid #e39d05;
        width: 100%;
    }
    
    .chat-input {
    color:blue;
        margin-bottom: 10px;
        flex: 1;
        border-radius: 5px;
        border: 1px solid #e39d05;  
        padding: 10px;
        font-size: 16px;
    }
    
    .button-container {
        color:#e39d05;
        display: flex;
        flex-direction: row;
        justify-content: flex-start;
    }
    
    .button {
        background-color: #e39d05; 
        color: black;
        border: none;
        border-radius: 20px;
        padding: 8px 16px;
        margin: 12px;
        cursor: pointer;
        font-size: 20px;
        display: flex;
        align-items: center;
        justify-content: center;
        transition: background-color 0.3s, box-shadow 0.3s;
    }
    
    .button:hover {
        background-color: #fa0a0a;
        box-shadow: 0 4px 8px #e39d05;
    }

    
    
    
    .titre h1 {
        font-family: 'Centaur', serif;
        font-size: 4em;
        margin: 0;
         color: #ad2727;
         text-align: center;
    }
    
    .titre p {
        font-size: 3em;
        font-family: 'Centaur', serif;
        margin-top: 10px;
        
            color: rgb(9 129 118);
         text-align: center;
               font-weight: bold;
    }
    .titre img{
               display: block;
            margin-left: auto;
            margin-right: auto;
            width: 20%;
               }
    
""") as demo:
    
    with gr.Row(elem_classes="titre"):
        
        gr.Markdown("<h1>Diagnostique médicale</h1><p class='description'>Bienvenue ! Entrez vos symptômes ou questions pour des conseils médicaux rapides</p><img src='https://imageio.forbes.com/specials-images/imageserve/64b54b7467fcc06271e9bcff/Chatbot-in-a-medical-cap--a-pen-and-a-notebook-in-his-hands-asks-how-he-can-help-/960x0.jpg?height=592&width=711&fit=bounds'>")
        

    with gr.Column(scale=1, elem_classes="chatbox-container"):
        with gr.Row():
            chatbot = gr.Chatbot(
                elem_id="chatbot",
                bubble_full_width=False,
                scale=1,
                elem_classes="chatbox"
            )
        
        with gr.Row(elem_classes="chat-input-container"):
            chat_input = gr.MultimodalTextbox(interactive=True,
                                              file_count="multiple",
                                              placeholder="Entrez un message ou téléchargez un fichier...", 
                                              show_label=False,
                                              elem_classes="chat-input")
            
            # Container for buttons below the input
            with gr.Row(elem_classes="button-container"):
                clear_button = gr.Button("Effacer", elem_classes="button")
                stop_button = gr.Button("Arrêter", elem_classes="button")
                generate_button = gr.Button("Générer", elem_classes="button")

                # Configuration des interactions
                chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
                bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
                bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

                clear_button.click(lambda: ([], gr.MultimodalTextbox(value=None, interactive=True)), None, [chatbot, chat_input])
                stop_button.click(lambda: "Arrêter cliqué", None, None)
                generate_button.click(lambda: "Générer cliqué", None, None)
                
    save_button = gr.Button("Sauvegarder", elem_classes="button")
    save_button.click(fn=lambda history: open("discussion_history.txt", "w").write(str(history)), inputs=chatbot, outputs=None)

# Lancement de l'interface
demo.launch()