import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Charger le modèle et le tokenizer model_name = "MaziyarPanahi/BioMistral-7B-GGUF" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model = model.to("cuda" if torch.cuda.is_available() else "cpu") def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(inputs['input_ids'], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def add_message(history, message): if message["text"] is not None: history.append((message["text"], None)) for x in message["files"]: history.append(((x,), None)) return history, gr.MultimodalTextbox(value=None, interactive=False) def bot(history): if history and history[-1][0]: history[-1] = (history[-1][0], generate_response(history[-1][0])) return history def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) # Création de l'interface Gradio avec le fond animé et des boutons stylisés with gr.Blocks(css=""" .gradio-container { background: url('https://st4.depositphotos.com/8211188/25405/v/450/depositphotos_254059962-stock-illustration-abstract-medical-background-with-flat.jpg')50% 50% no-repeat; background-size: cover; } .chatbox-container { max-width: 80%; margin: 20px auto; padding: 20px 20px; background-color: rgb(39 150 160); border-radius: 12px; box-shadow: 0 0 20px rgba(0, 0, 0, 0.1); display: flex; flex-direction: row; align-items: stretch; } .chatbox { flex: 1; overflow-y: auto; padding: 10px; display: flex; flex-direction: column; justify-content: flex-end; border-bottom: 1px solid #e39d05; height: 400px; } .chat-input-container { display: flex; flex-direction: column; padding: 10px; border-top: 1px solid #e39d05; width: 100%; } .chat-input { color:blue; margin-bottom: 10px; flex: 1; border-radius: 5px; border: 1px solid #e39d05; padding: 10px; font-size: 16px; } .button-container { color:#e39d05; display: flex; flex-direction: row; justify-content: flex-start; } .button { background-color: #e39d05; color: black; border: none; border-radius: 20px; padding: 8px 16px; margin: 12px; cursor: pointer; font-size: 20px; display: flex; align-items: center; justify-content: center; transition: background-color 0.3s, box-shadow 0.3s; } .button:hover { background-color: #fa0a0a; box-shadow: 0 4px 8px #e39d05; } .titre h1 { font-family: 'Centaur', serif; font-size: 4em; margin: 0; color: #ad2727; text-align: center; } .titre p { font-size: 3em; font-family: 'Centaur', serif; margin-top: 10px; color: rgb(9 129 118); text-align: center; font-weight: bold; } .titre img{ display: block; margin-left: auto; margin-right: auto; width: 20%; } """) as demo: with gr.Row(elem_classes="titre"): gr.Markdown("

Diagnostique médicale

Bienvenue ! Entrez vos symptômes ou questions pour des conseils médicaux rapides

") with gr.Column(scale=1, elem_classes="chatbox-container"): with gr.Row(): chatbot = gr.Chatbot( elem_id="chatbot", bubble_full_width=False, scale=1, elem_classes="chatbox" ) with gr.Row(elem_classes="chat-input-container"): chat_input = gr.MultimodalTextbox(interactive=True, file_count="multiple", placeholder="Entrez un message ou téléchargez un fichier...", show_label=False, elem_classes="chat-input") # Container for buttons below the input with gr.Row(elem_classes="button-container"): clear_button = gr.Button("Effacer", elem_classes="button") stop_button = gr.Button("Arrêter", elem_classes="button") generate_button = gr.Button("Générer", elem_classes="button") # Configuration des interactions chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) clear_button.click(lambda: ([], gr.MultimodalTextbox(value=None, interactive=True)), None, [chatbot, chat_input]) stop_button.click(lambda: "Arrêter cliqué", None, None) generate_button.click(lambda: "Générer cliqué", None, None) save_button = gr.Button("Sauvegarder", elem_classes="button") save_button.click(fn=lambda history: open("discussion_history.txt", "w").write(str(history)), inputs=chatbot, outputs=None) # Lancement de l'interface demo.launch()