import gradio as gr import os from pathlib import Path import argparse model_file = "Yi-6B.q4_k_m.gguf" if not os.path.isfile("Yi-6B.q4_k_m.gguf"): os.system("wget -c https://huggingface.co/SamPurkis/Yi-6B-GGUF/resolve/main/Yi-6B.q4_k_m.gguf") DEFAULT_MODEL_PATH = model_file parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", default=DEFAULT_MODEL_PATH, type=Path, help="model path") parser.add_argument("--mode", default="chat", type=str, choices=["chat", "generate"], help="inference mode") parser.add_argument("-l", "--max_length", default=2048, type=int, help="max total length including prompt and output") parser.add_argument("-c", "--max_context_length", default=512, type=int, help="max context length") parser.add_argument("--top_k", default=0, type=int, help="top-k sampling") parser.add_argument("--top_p", default=0.7, type=float, help="top-p sampling") parser.add_argument("--temp", default=0.95, type=float, help="temperature") parser.add_argument("--repeat_penalty", default=1.1, type=float, help="penalize repeat sequence of tokens") parser.add_argument("-t", "--threads", default=0, type=int, help="number of threads for inference") parser.add_argument("--plain", action="store_true", help="display in plain text without markdown support") args = parser.parse_args() from llama_cpp import Llama llm = Llama(model_path=model_file) def predict(input, system_prompt, chatbot, max_length, ctx_length, top_p, temperature, history): chatbot.append((input, "")) response = "" history.append(input) generation_kwargs = dict( max_length=max_length, max_context_length=ctx_length, do_sample=temperature > 0, top_k=40, top_p=top_p, temperature=temperature, repetition_penalty=1.1, num_threads=0, stream=True, ) output = llm(input) response = output['choices'][0]['text'] for response_piece in response: response += response_piece chatbot[-1] = (chatbot[-1][0], response) yield chatbot, history history.append(response) yield chatbot, history def reset_user_input(): return gr.update(value="") def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""