spacestar1705
commited on
Commit
•
f19c4d0
1
Parent(s):
cc102fc
Test commit
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -622.94 +/- 219.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49242c9950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49242c99e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49242c9a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49242c9b00>", "_build": "<function ActorCriticPolicy._build at 0x7f49242c9b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f49242c9c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49242c9cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49242c9d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49242c9dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49242c9e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49242c9ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4924319930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 51200, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657795065.697084, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMg4IPwvuVyhD8Cc3O+kho3vv+2kb6K2BY+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdLLUer8jRsCUhpRSlIwBbJRLi4wBdJRHQEURr3TNMXd1fZQoaAZoCWgPQwiQgqeQKzUjQJSGlFKUaBVL52gWR0BFOaCtihFmdX2UKGgGaAloD0MIyNCxg8q8ZcCUhpRSlGgVS8FoFkdARVpGvwEyL3V9lChoBmgJaA9DCNmVlpF6gzNAlIaUUpRoFUuvaBZHQEV3guyu6mR1fZQoaAZoCWgPQwhOm3EaokIvwJSGlFKUaBVLnmgWR0BFkNnPE87qdX2UKGgGaAloD0MI4297gsQiTsCUhpRSlGgVS2RoFkdARaB8c+7lJnV9lChoBmgJaA9DCAaCABk6SVrAlIaUUpRoFUuGaBZHQEW2+yJKraN1fZQoaAZoCWgPQwgHtkqwOLJWwJSGlFKUaBVLiGgWR0BGhdfb9If9dX2UKGgGaAloD0MIrizRWWYNRcCUhpRSlGgVS1VoFkdARpMTzundf3V9lChoBmgJaA9DCEHUfQBSE0XAlIaUUpRoFUuraBZHQEavva11GLF1fZQoaAZoCWgPQwgtXFZhMzJewJSGlFKUaBVLdWgWR0BGwm9xp+MIdX2UKGgGaAloD0MICMiXUMETR8CUhpRSlGgVS2BoFkdARtIbdadMCnV9lChoBmgJaA9DCCqOA68WOmPAlIaUUpRoFUuKaBZHQEboFPBSDRN1fZQoaAZoCWgPQwj4b16c+I5iwJSGlFKUaBVLxWgWR0BHCOgYgq3FdX2UKGgGaAloD0MIvOmWHeLbN8CUhpRSlGgVS15oFkdARxf2VVxS53V9lChoBmgJaA9DCFTm5hvRL0/AlIaUUpRoFUu7aBZHQEc32Dg62fF1fZQoaAZoCWgPQwgn9WVppzZPwJSGlFKUaBVL0mgWR0BHXAu7HyVfdX2UKGgGaAloD0MIzA2GOqxGScCUhpRSlGgVS5poFkdAR3XAuZkTYnV9lChoBmgJaA9DCFpiZTTyM0zAlIaUUpRoFUuraBZHQEeRXUYsNDt1fZQoaAZoCWgPQwh+HqM88+5FwJSGlFKUaBVLymgWR0BHtBb4agmJdX2UKGgGaAloD0MIXKs97IWWPsCUhpRSlGgVS3poFkdAR8coQWepXXV9lChoBmgJaA9DCLMkQE0tw0/AlIaUUpRoFUuXaBZHQEidoCdSVGF1fZQoaAZoCWgPQwhRvqCFBAtnwJSGlFKUaBVLj2gWR0BItXKr7wazdX2UKGgGaAloD0MIPQ0YJP2MZ8CUhpRSlGgVS+poFkdASN/avicXnHV9lChoBmgJaA9DCFcm/FI/IWbAlIaUUpRoFU1oAWgWR0BJIknTiKixdX2UKGgGaAloD0MIEticg2e6QsCUhpRSlGgVS8hoFkdASUTZ8KG+K3V9lChoBmgJaA9DCMSXiSIkfmPAlIaUUpRoFUv0aBZHQEluXwb2lEZ1fZQoaAZoCWgPQwh6pwLueX4eQJSGlFKUaBVLdGgWR0BJgO5z5oGqdX2UKGgGaAloD0MIZd6q61BFIMCUhpRSlGgVS35oFkdASZTJSzgMt3V9lChoBmgJaA9DCOYF2EennjnAlIaUUpRoFUuLaBZHQEmriI+GGmF1fZQoaAZoCWgPQwgSUOEI0s5owJSGlFKUaBVLl2gWR0BJxWGIsRQKdX2UKGgGaAloD0MIEJTb9j3iTsCUhpRSlGgVS8FoFkdASebq8lHBlHV9lChoBmgJaA9DCF4robsk8kPAlIaUUpRoFUuDaBZHQEq09lEqlP91fZQoaAZoCWgPQwggY+5aQgIxwJSGlFKUaBVLhmgWR0BKywm/nGKidX2UKGgGaAloD0MIA2A8g4bRVsCUhpRSlGgVS8VoFkdASuytmthd+3V9lChoBmgJaA9DCH09X7Nc1iNAlIaUUpRoFUvnaBZHQEsW495hScd1fZQoaAZoCWgPQwhRMGMK1qx0wJSGlFKUaBVNGgFoFkdAS0qNfgJkXnV9lChoBmgJaA9DCOiGpuz0dzTAlIaUUpRoFUudaBZHQEtlddmg8KZ1fZQoaAZoCWgPQwh79fHQd8tuwJSGlFKUaBVL4WgWR0BLi+4b0e2edX2UKGgGaAloD0MIXr2KjA4GQ8CUhpRSlGgVS7hoFkdAS6t03fhuO3V9lChoBmgJaA9DCEgbR6zFoVDAlIaUUpRoFUvJaBZHQEvN7zkIX0p1fZQoaAZoCWgPQwgoRSv3Ass2wJSGlFKUaBVLbmgWR0BL33wTdtVJdX2UKGgGaAloD0MIFJfjFQi3dcCUhpRSlGgVS7ZoFkdAS/4vzvqkdnV9lChoBmgJaA9DCONrzywJ8CzAlIaUUpRoFU3oA2gWR0BNsaX8fmtAdX2UKGgGaAloD0MIjGg7pu6Fb8CUhpRSlGgVS91oFkdATdhr1uivgXV9lChoBmgJaA9DCHUAxF29BEnAlIaUUpRoFU03AWgWR0BOECl7+kxidX2UKGgGaAloD0MIj+TyH9LgUkCUhpRSlGgVTegDaBZHQE+9rNW2gFp1fZQoaAZoCWgPQwj8GkmCcBtGwJSGlFKUaBVLxGgWR0BP35cTrVvudX2UKGgGaAloD0MInUzcKoidRECUhpRSlGgVS6hoFkdAT/sTviLl3nV9lChoBmgJaA9DCDtUU5J1GAVAlIaUUpRoFUusaBZHQFALoduHerN1fZQoaAZoCWgPQwjEJjJzgbM6wJSGlFKUaBVL72gWR0BQIEsjFAE/dX2UKGgGaAloD0MI2sngKHlxNMCUhpRSlGgVS5xoFkdAUC27xusLfHV9lChoBmgJaA9DCGGlgoqqbxpAlIaUUpRoFUvraBZHQFBCESM98qp1fZQoaAZoCWgPQwgvNNdppLlFQJSGlFKUaBVLpWgWR0BQT7CSA6MjdX2UKGgGaAloD0MIkBK7trdb8D+UhpRSlGgVS7xoFkdAUF+u7pV0cXV9lChoBmgJaA9DCGDLK9fb9E1AlIaUUpRoFU3oA2gWR0BRTcpkPMB7dX2UKGgGaAloD0MIDWyVYHEwLkCUhpRSlGgVS+9oFkdAUWLDEWIoE3V9lChoBmgJaA9DCOzbSUT49xrAlIaUUpRoFU1cAWgWR0BRhiAc1fmcdX2UKGgGaAloD0MIucMmMnPbVECUhpRSlGgVTegDaBZHQFKYu0CzTnd1fZQoaAZoCWgPQwjWHYttUrNzwJSGlFKUaBVN+AFoFkdAUtGgdwNsnHV9lChoBmgJaA9DCIF5yJQPiSjAlIaUUpRoFU1GAWgWR0BS8EIHC4z8dX2UKGgGaAloD0MI/OB86lhCWcCUhpRSlGgVTXoBaBZHQFMVVWjoIOZ1fZQoaAZoCWgPQwirQZjbvV5NwJSGlFKUaBVLx2gWR0BTJnjMmnfmdX2UKGgGaAloD0MIHT1+b9NFV8CUhpRSlGgVS/doFkdAU5qKLsKLKnV9lChoBmgJaA9DCMxdS8gH7UdAlIaUUpRoFU3oA2gWR0BUFxBzFMqSdX2UKGgGaAloD0MIQ3QIHAn6YsCUhpRSlGgVTbQBaBZHQFRCn003wTd1fZQoaAZoCWgPQwik4ZS5+S5YQJSGlFKUaBVN6ANoFkdAVSd1+y7f53V9lChoBmgJaA9DCOmY84x9yfa/lIaUUpRoFUvjaBZHQFU7GD+R5kd1fZQoaAZoCWgPQwgepKfIIaxQwJSGlFKUaBVL/WgWR0BVUZfdAPd3dX2UKGgGaAloD0MIoMTnTrCtS8CUhpRSlGgVTRUBaBZHQFVq0vGp++d1fZQoaAZoCWgPQwjWHvZCARNVwJSGlFKUaBVL/WgWR0BVgfU8V58jdX2UKGgGaAloD0MIYi6p2m60QMCUhpRSlGgVTQYBaBZHQFWZkHUtqYZ1fZQoaAZoCWgPQwgLXvQVpA0yQJSGlFKUaBVLwWgWR0BVqfT5O8CgdX2UKGgGaAloD0MIxttKr82+QUCUhpRSlGgVTSABaBZHQFYhgfEGZ/l1fZQoaAZoCWgPQwhnKsQj8e5bQJSGlFKUaBVN6ANoFkdAVp6yLQ5WBHV9lChoBmgJaA9DCNasM74v/khAlIaUUpRoFUu5aBZHQFauuAqd6LR1fZQoaAZoCWgPQwi86ZYd4gNFwJSGlFKUaBVNYAFoFkdAVtBIatLcsXV9lChoBmgJaA9DCFqcMcwJDEBAlIaUUpRoFUvnaBZHQFbkLpzLfUF1fZQoaAZoCWgPQwjbT8b4MBFXQJSGlFKUaBVN6ANoFkdAV8h1KXfIjnV9lChoBmgJaA9DCG/Tn/1IEdK/lIaUUpRoFUuGaBZHQFfT3xWkrPN1fZQoaAZoCWgPQwhighq+hYEyQJSGlFKUaBVLn2gWR0BX4OxbB42TdX2UKGgGaAloD0MIn1inyvcUIUCUhpRSlGgVS9ZoFkdAV/Ma0hNdq3V9lChoBmgJaA9DCKkSZW8pqzfAlIaUUpRoFUuXaBZHQFf/T9KmKqJ1fZQoaAZoCWgPQwggKLfte4w4wJSGlFKUaBVL6mgWR0BYE3mFJxvOdX2UKGgGaAloD0MIHqSnyCFQQsCUhpRSlGgVS8hoFkdAWCSCvovBanV9lChoBmgJaA9DCAWoqWVr1SLAlIaUUpRoFUvVaBZHQFiTzcAR02d1fZQoaAZoCWgPQwihgO1gxOFawJSGlFKUaBVNOQFoFkdAWLGg13t8eHV9lChoBmgJaA9DCATG+gYmzlTAlIaUUpRoFU0yAWgWR0BYzfe54GD+dX2UKGgGaAloD0MILv8h/fYkUsCUhpRSlGgVTQUBaBZHQFjkom5UcXF1fZQoaAZoCWgPQwh39L9ciwRBQJSGlFKUaBVLo2gWR0BY8l5v99+gdX2UKGgGaAloD0MIaLEUyVciNMCUhpRSlGgVTRcBaBZHQFkKfms/6ft1fZQoaAZoCWgPQwitLxLacuBKwJSGlFKUaBVLrWgWR0BZGWICU5dXdX2UKGgGaAloD0MI+KdUibKJRUCUhpRSlGgVTegDaBZHQFoBl54W1tx1fZQoaAZoCWgPQwgK98q8VUNNwJSGlFKUaBVNKgFoFkdAWh+bnX/YJ3V9lChoBmgJaA9DCKeVQiCXXD5AlIaUUpRoFU3oA2gWR0BaoNvCMxXXdX2UKGgGaAloD0MIt+wQ/7BSWUCUhpRSlGgVTegDaBZHQFuud3jdYXB1fZQoaAZoCWgPQwjO/GoOEIwhwJSGlFKUaBVNMgFoFkdAW8wXQ+lj3HV9lChoBmgJaA9DCJFEL6NY/EPAlIaUUpRoFU0QAWgWR0Bb5ZvcafjCdX2UKGgGaAloD0MIA7aDEfv1V8CUhpRSlGgVTV8BaBZHQFwFnBciW3V1fZQoaAZoCWgPQwhCzZAqip8mwJSGlFKUaBVL+2gWR0BcHAydnTRZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2e4ce8c5b3bd6ec063499419d80ccf5dab1bd437aa0537b1bcf09c9294e8a92
|
3 |
+
size 146490
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f49242c9950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49242c99e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49242c9a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49242c9b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f49242c9b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f49242c9c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49242c9cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f49242c9d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49242c9dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49242c9e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49242c9ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4924319930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 51200,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1657795065.697084,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMg4IPwvuVyhD8Cc3O+kho3vv+2kb6K2BY+AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02400000000000002,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdLLUer8jRsCUhpRSlIwBbJRLi4wBdJRHQEURr3TNMXd1fZQoaAZoCWgPQwiQgqeQKzUjQJSGlFKUaBVL52gWR0BFOaCtihFmdX2UKGgGaAloD0MIyNCxg8q8ZcCUhpRSlGgVS8FoFkdARVpGvwEyL3V9lChoBmgJaA9DCNmVlpF6gzNAlIaUUpRoFUuvaBZHQEV3guyu6mR1fZQoaAZoCWgPQwhOm3EaokIvwJSGlFKUaBVLnmgWR0BFkNnPE87qdX2UKGgGaAloD0MI4297gsQiTsCUhpRSlGgVS2RoFkdARaB8c+7lJnV9lChoBmgJaA9DCAaCABk6SVrAlIaUUpRoFUuGaBZHQEW2+yJKraN1fZQoaAZoCWgPQwgHtkqwOLJWwJSGlFKUaBVLiGgWR0BGhdfb9If9dX2UKGgGaAloD0MIrizRWWYNRcCUhpRSlGgVS1VoFkdARpMTzundf3V9lChoBmgJaA9DCEHUfQBSE0XAlIaUUpRoFUuraBZHQEavva11GLF1fZQoaAZoCWgPQwgtXFZhMzJewJSGlFKUaBVLdWgWR0BGwm9xp+MIdX2UKGgGaAloD0MICMiXUMETR8CUhpRSlGgVS2BoFkdARtIbdadMCnV9lChoBmgJaA9DCCqOA68WOmPAlIaUUpRoFUuKaBZHQEboFPBSDRN1fZQoaAZoCWgPQwj4b16c+I5iwJSGlFKUaBVLxWgWR0BHCOgYgq3FdX2UKGgGaAloD0MIvOmWHeLbN8CUhpRSlGgVS15oFkdARxf2VVxS53V9lChoBmgJaA9DCFTm5hvRL0/AlIaUUpRoFUu7aBZHQEc32Dg62fF1fZQoaAZoCWgPQwgn9WVppzZPwJSGlFKUaBVL0mgWR0BHXAu7HyVfdX2UKGgGaAloD0MIzA2GOqxGScCUhpRSlGgVS5poFkdAR3XAuZkTYnV9lChoBmgJaA9DCFpiZTTyM0zAlIaUUpRoFUuraBZHQEeRXUYsNDt1fZQoaAZoCWgPQwh+HqM88+5FwJSGlFKUaBVLymgWR0BHtBb4agmJdX2UKGgGaAloD0MIXKs97IWWPsCUhpRSlGgVS3poFkdAR8coQWepXXV9lChoBmgJaA9DCLMkQE0tw0/AlIaUUpRoFUuXaBZHQEidoCdSVGF1fZQoaAZoCWgPQwhRvqCFBAtnwJSGlFKUaBVLj2gWR0BItXKr7wazdX2UKGgGaAloD0MIPQ0YJP2MZ8CUhpRSlGgVS+poFkdASN/avicXnHV9lChoBmgJaA9DCFcm/FI/IWbAlIaUUpRoFU1oAWgWR0BJIknTiKixdX2UKGgGaAloD0MIEticg2e6QsCUhpRSlGgVS8hoFkdASUTZ8KG+K3V9lChoBmgJaA9DCMSXiSIkfmPAlIaUUpRoFUv0aBZHQEluXwb2lEZ1fZQoaAZoCWgPQwh6pwLueX4eQJSGlFKUaBVLdGgWR0BJgO5z5oGqdX2UKGgGaAloD0MIZd6q61BFIMCUhpRSlGgVS35oFkdASZTJSzgMt3V9lChoBmgJaA9DCOYF2EennjnAlIaUUpRoFUuLaBZHQEmriI+GGmF1fZQoaAZoCWgPQwgSUOEI0s5owJSGlFKUaBVLl2gWR0BJxWGIsRQKdX2UKGgGaAloD0MIEJTb9j3iTsCUhpRSlGgVS8FoFkdASebq8lHBlHV9lChoBmgJaA9DCF4robsk8kPAlIaUUpRoFUuDaBZHQEq09lEqlP91fZQoaAZoCWgPQwggY+5aQgIxwJSGlFKUaBVLhmgWR0BKywm/nGKidX2UKGgGaAloD0MIA2A8g4bRVsCUhpRSlGgVS8VoFkdASuytmthd+3V9lChoBmgJaA9DCH09X7Nc1iNAlIaUUpRoFUvnaBZHQEsW495hScd1fZQoaAZoCWgPQwhRMGMK1qx0wJSGlFKUaBVNGgFoFkdAS0qNfgJkXnV9lChoBmgJaA9DCOiGpuz0dzTAlIaUUpRoFUudaBZHQEtlddmg8KZ1fZQoaAZoCWgPQwh79fHQd8tuwJSGlFKUaBVL4WgWR0BLi+4b0e2edX2UKGgGaAloD0MIXr2KjA4GQ8CUhpRSlGgVS7hoFkdAS6t03fhuO3V9lChoBmgJaA9DCEgbR6zFoVDAlIaUUpRoFUvJaBZHQEvN7zkIX0p1fZQoaAZoCWgPQwgoRSv3Ass2wJSGlFKUaBVLbmgWR0BL33wTdtVJdX2UKGgGaAloD0MIFJfjFQi3dcCUhpRSlGgVS7ZoFkdAS/4vzvqkdnV9lChoBmgJaA9DCONrzywJ8CzAlIaUUpRoFU3oA2gWR0BNsaX8fmtAdX2UKGgGaAloD0MIjGg7pu6Fb8CUhpRSlGgVS91oFkdATdhr1uivgXV9lChoBmgJaA9DCHUAxF29BEnAlIaUUpRoFU03AWgWR0BOECl7+kxidX2UKGgGaAloD0MIj+TyH9LgUkCUhpRSlGgVTegDaBZHQE+9rNW2gFp1fZQoaAZoCWgPQwj8GkmCcBtGwJSGlFKUaBVLxGgWR0BP35cTrVvudX2UKGgGaAloD0MInUzcKoidRECUhpRSlGgVS6hoFkdAT/sTviLl3nV9lChoBmgJaA9DCDtUU5J1GAVAlIaUUpRoFUusaBZHQFALoduHerN1fZQoaAZoCWgPQwjEJjJzgbM6wJSGlFKUaBVL72gWR0BQIEsjFAE/dX2UKGgGaAloD0MI2sngKHlxNMCUhpRSlGgVS5xoFkdAUC27xusLfHV9lChoBmgJaA9DCGGlgoqqbxpAlIaUUpRoFUvraBZHQFBCESM98qp1fZQoaAZoCWgPQwgvNNdppLlFQJSGlFKUaBVLpWgWR0BQT7CSA6MjdX2UKGgGaAloD0MIkBK7trdb8D+UhpRSlGgVS7xoFkdAUF+u7pV0cXV9lChoBmgJaA9DCGDLK9fb9E1AlIaUUpRoFU3oA2gWR0BRTcpkPMB7dX2UKGgGaAloD0MIDWyVYHEwLkCUhpRSlGgVS+9oFkdAUWLDEWIoE3V9lChoBmgJaA9DCOzbSUT49xrAlIaUUpRoFU1cAWgWR0BRhiAc1fmcdX2UKGgGaAloD0MIucMmMnPbVECUhpRSlGgVTegDaBZHQFKYu0CzTnd1fZQoaAZoCWgPQwjWHYttUrNzwJSGlFKUaBVN+AFoFkdAUtGgdwNsnHV9lChoBmgJaA9DCIF5yJQPiSjAlIaUUpRoFU1GAWgWR0BS8EIHC4z8dX2UKGgGaAloD0MI/OB86lhCWcCUhpRSlGgVTXoBaBZHQFMVVWjoIOZ1fZQoaAZoCWgPQwirQZjbvV5NwJSGlFKUaBVLx2gWR0BTJnjMmnfmdX2UKGgGaAloD0MIHT1+b9NFV8CUhpRSlGgVS/doFkdAU5qKLsKLKnV9lChoBmgJaA9DCMxdS8gH7UdAlIaUUpRoFU3oA2gWR0BUFxBzFMqSdX2UKGgGaAloD0MIQ3QIHAn6YsCUhpRSlGgVTbQBaBZHQFRCn003wTd1fZQoaAZoCWgPQwik4ZS5+S5YQJSGlFKUaBVN6ANoFkdAVSd1+y7f53V9lChoBmgJaA9DCOmY84x9yfa/lIaUUpRoFUvjaBZHQFU7GD+R5kd1fZQoaAZoCWgPQwgepKfIIaxQwJSGlFKUaBVL/WgWR0BVUZfdAPd3dX2UKGgGaAloD0MIoMTnTrCtS8CUhpRSlGgVTRUBaBZHQFVq0vGp++d1fZQoaAZoCWgPQwjWHvZCARNVwJSGlFKUaBVL/WgWR0BVgfU8V58jdX2UKGgGaAloD0MIYi6p2m60QMCUhpRSlGgVTQYBaBZHQFWZkHUtqYZ1fZQoaAZoCWgPQwgLXvQVpA0yQJSGlFKUaBVLwWgWR0BVqfT5O8CgdX2UKGgGaAloD0MIxttKr82+QUCUhpRSlGgVTSABaBZHQFYhgfEGZ/l1fZQoaAZoCWgPQwhnKsQj8e5bQJSGlFKUaBVN6ANoFkdAVp6yLQ5WBHV9lChoBmgJaA9DCNasM74v/khAlIaUUpRoFUu5aBZHQFauuAqd6LR1fZQoaAZoCWgPQwi86ZYd4gNFwJSGlFKUaBVNYAFoFkdAVtBIatLcsXV9lChoBmgJaA9DCFqcMcwJDEBAlIaUUpRoFUvnaBZHQFbkLpzLfUF1fZQoaAZoCWgPQwjbT8b4MBFXQJSGlFKUaBVN6ANoFkdAV8h1KXfIjnV9lChoBmgJaA9DCG/Tn/1IEdK/lIaUUpRoFUuGaBZHQFfT3xWkrPN1fZQoaAZoCWgPQwhighq+hYEyQJSGlFKUaBVLn2gWR0BX4OxbB42TdX2UKGgGaAloD0MIn1inyvcUIUCUhpRSlGgVS9ZoFkdAV/Ma0hNdq3V9lChoBmgJaA9DCKkSZW8pqzfAlIaUUpRoFUuXaBZHQFf/T9KmKqJ1fZQoaAZoCWgPQwggKLfte4w4wJSGlFKUaBVL6mgWR0BYE3mFJxvOdX2UKGgGaAloD0MIHqSnyCFQQsCUhpRSlGgVS8hoFkdAWCSCvovBanV9lChoBmgJaA9DCAWoqWVr1SLAlIaUUpRoFUvVaBZHQFiTzcAR02d1fZQoaAZoCWgPQwihgO1gxOFawJSGlFKUaBVNOQFoFkdAWLGg13t8eHV9lChoBmgJaA9DCATG+gYmzlTAlIaUUpRoFU0yAWgWR0BYzfe54GD+dX2UKGgGaAloD0MILv8h/fYkUsCUhpRSlGgVTQUBaBZHQFjkom5UcXF1fZQoaAZoCWgPQwh39L9ciwRBQJSGlFKUaBVLo2gWR0BY8l5v99+gdX2UKGgGaAloD0MIaLEUyVciNMCUhpRSlGgVTRcBaBZHQFkKfms/6ft1fZQoaAZoCWgPQwitLxLacuBKwJSGlFKUaBVLrWgWR0BZGWICU5dXdX2UKGgGaAloD0MI+KdUibKJRUCUhpRSlGgVTegDaBZHQFoBl54W1tx1fZQoaAZoCWgPQwgK98q8VUNNwJSGlFKUaBVNKgFoFkdAWh+bnX/YJ3V9lChoBmgJaA9DCKeVQiCXXD5AlIaUUpRoFU3oA2gWR0BaoNvCMxXXdX2UKGgGaAloD0MIt+wQ/7BSWUCUhpRSlGgVTegDaBZHQFuud3jdYXB1fZQoaAZoCWgPQwjO/GoOEIwhwJSGlFKUaBVNMgFoFkdAW8wXQ+lj3HV9lChoBmgJaA9DCJFEL6NY/EPAlIaUUpRoFU0QAWgWR0Bb5ZvcafjCdX2UKGgGaAloD0MIA7aDEfv1V8CUhpRSlGgVTV8BaBZHQFwFnBciW3V1fZQoaAZoCWgPQwhCzZAqip8mwJSGlFKUaBVL+2gWR0BcHAydnTRZdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 250,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7ef27f1053c0204fbeef7c35ea44721cff1f19cb1bf6ef95db4404659f29881
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:684df336c7914f4131e3773607bb6b0b64b910db62c2eeea275a7772001e2800
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (69.8 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -622.9377482000001, "std_reward": 219.73016666623394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-14T10:39:49.291631"}
|