spacestar1705 commited on
Commit
f19c4d0
1 Parent(s): cc102fc

Test commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -622.94 +/- 219.73
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49242c9950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49242c99e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49242c9a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49242c9b00>", "_build": "<function ActorCriticPolicy._build at 0x7f49242c9b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f49242c9c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49242c9cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49242c9d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49242c9dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49242c9e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49242c9ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4924319930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 51200, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657795065.697084, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMg4IPwvuVyhD8Cc3O+kho3vv+2kb6K2BY+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdLLUer8jRsCUhpRSlIwBbJRLi4wBdJRHQEURr3TNMXd1fZQoaAZoCWgPQwiQgqeQKzUjQJSGlFKUaBVL52gWR0BFOaCtihFmdX2UKGgGaAloD0MIyNCxg8q8ZcCUhpRSlGgVS8FoFkdARVpGvwEyL3V9lChoBmgJaA9DCNmVlpF6gzNAlIaUUpRoFUuvaBZHQEV3guyu6mR1fZQoaAZoCWgPQwhOm3EaokIvwJSGlFKUaBVLnmgWR0BFkNnPE87qdX2UKGgGaAloD0MI4297gsQiTsCUhpRSlGgVS2RoFkdARaB8c+7lJnV9lChoBmgJaA9DCAaCABk6SVrAlIaUUpRoFUuGaBZHQEW2+yJKraN1fZQoaAZoCWgPQwgHtkqwOLJWwJSGlFKUaBVLiGgWR0BGhdfb9If9dX2UKGgGaAloD0MIrizRWWYNRcCUhpRSlGgVS1VoFkdARpMTzundf3V9lChoBmgJaA9DCEHUfQBSE0XAlIaUUpRoFUuraBZHQEavva11GLF1fZQoaAZoCWgPQwgtXFZhMzJewJSGlFKUaBVLdWgWR0BGwm9xp+MIdX2UKGgGaAloD0MICMiXUMETR8CUhpRSlGgVS2BoFkdARtIbdadMCnV9lChoBmgJaA9DCCqOA68WOmPAlIaUUpRoFUuKaBZHQEboFPBSDRN1fZQoaAZoCWgPQwj4b16c+I5iwJSGlFKUaBVLxWgWR0BHCOgYgq3FdX2UKGgGaAloD0MIvOmWHeLbN8CUhpRSlGgVS15oFkdARxf2VVxS53V9lChoBmgJaA9DCFTm5hvRL0/AlIaUUpRoFUu7aBZHQEc32Dg62fF1fZQoaAZoCWgPQwgn9WVppzZPwJSGlFKUaBVL0mgWR0BHXAu7HyVfdX2UKGgGaAloD0MIzA2GOqxGScCUhpRSlGgVS5poFkdAR3XAuZkTYnV9lChoBmgJaA9DCFpiZTTyM0zAlIaUUpRoFUuraBZHQEeRXUYsNDt1fZQoaAZoCWgPQwh+HqM88+5FwJSGlFKUaBVLymgWR0BHtBb4agmJdX2UKGgGaAloD0MIXKs97IWWPsCUhpRSlGgVS3poFkdAR8coQWepXXV9lChoBmgJaA9DCLMkQE0tw0/AlIaUUpRoFUuXaBZHQEidoCdSVGF1fZQoaAZoCWgPQwhRvqCFBAtnwJSGlFKUaBVLj2gWR0BItXKr7wazdX2UKGgGaAloD0MIPQ0YJP2MZ8CUhpRSlGgVS+poFkdASN/avicXnHV9lChoBmgJaA9DCFcm/FI/IWbAlIaUUpRoFU1oAWgWR0BJIknTiKixdX2UKGgGaAloD0MIEticg2e6QsCUhpRSlGgVS8hoFkdASUTZ8KG+K3V9lChoBmgJaA9DCMSXiSIkfmPAlIaUUpRoFUv0aBZHQEluXwb2lEZ1fZQoaAZoCWgPQwh6pwLueX4eQJSGlFKUaBVLdGgWR0BJgO5z5oGqdX2UKGgGaAloD0MIZd6q61BFIMCUhpRSlGgVS35oFkdASZTJSzgMt3V9lChoBmgJaA9DCOYF2EennjnAlIaUUpRoFUuLaBZHQEmriI+GGmF1fZQoaAZoCWgPQwgSUOEI0s5owJSGlFKUaBVLl2gWR0BJxWGIsRQKdX2UKGgGaAloD0MIEJTb9j3iTsCUhpRSlGgVS8FoFkdASebq8lHBlHV9lChoBmgJaA9DCF4robsk8kPAlIaUUpRoFUuDaBZHQEq09lEqlP91fZQoaAZoCWgPQwggY+5aQgIxwJSGlFKUaBVLhmgWR0BKywm/nGKidX2UKGgGaAloD0MIA2A8g4bRVsCUhpRSlGgVS8VoFkdASuytmthd+3V9lChoBmgJaA9DCH09X7Nc1iNAlIaUUpRoFUvnaBZHQEsW495hScd1fZQoaAZoCWgPQwhRMGMK1qx0wJSGlFKUaBVNGgFoFkdAS0qNfgJkXnV9lChoBmgJaA9DCOiGpuz0dzTAlIaUUpRoFUudaBZHQEtlddmg8KZ1fZQoaAZoCWgPQwh79fHQd8tuwJSGlFKUaBVL4WgWR0BLi+4b0e2edX2UKGgGaAloD0MIXr2KjA4GQ8CUhpRSlGgVS7hoFkdAS6t03fhuO3V9lChoBmgJaA9DCEgbR6zFoVDAlIaUUpRoFUvJaBZHQEvN7zkIX0p1fZQoaAZoCWgPQwgoRSv3Ass2wJSGlFKUaBVLbmgWR0BL33wTdtVJdX2UKGgGaAloD0MIFJfjFQi3dcCUhpRSlGgVS7ZoFkdAS/4vzvqkdnV9lChoBmgJaA9DCONrzywJ8CzAlIaUUpRoFU3oA2gWR0BNsaX8fmtAdX2UKGgGaAloD0MIjGg7pu6Fb8CUhpRSlGgVS91oFkdATdhr1uivgXV9lChoBmgJaA9DCHUAxF29BEnAlIaUUpRoFU03AWgWR0BOECl7+kxidX2UKGgGaAloD0MIj+TyH9LgUkCUhpRSlGgVTegDaBZHQE+9rNW2gFp1fZQoaAZoCWgPQwj8GkmCcBtGwJSGlFKUaBVLxGgWR0BP35cTrVvudX2UKGgGaAloD0MInUzcKoidRECUhpRSlGgVS6hoFkdAT/sTviLl3nV9lChoBmgJaA9DCDtUU5J1GAVAlIaUUpRoFUusaBZHQFALoduHerN1fZQoaAZoCWgPQwjEJjJzgbM6wJSGlFKUaBVL72gWR0BQIEsjFAE/dX2UKGgGaAloD0MI2sngKHlxNMCUhpRSlGgVS5xoFkdAUC27xusLfHV9lChoBmgJaA9DCGGlgoqqbxpAlIaUUpRoFUvraBZHQFBCESM98qp1fZQoaAZoCWgPQwgvNNdppLlFQJSGlFKUaBVLpWgWR0BQT7CSA6MjdX2UKGgGaAloD0MIkBK7trdb8D+UhpRSlGgVS7xoFkdAUF+u7pV0cXV9lChoBmgJaA9DCGDLK9fb9E1AlIaUUpRoFU3oA2gWR0BRTcpkPMB7dX2UKGgGaAloD0MIDWyVYHEwLkCUhpRSlGgVS+9oFkdAUWLDEWIoE3V9lChoBmgJaA9DCOzbSUT49xrAlIaUUpRoFU1cAWgWR0BRhiAc1fmcdX2UKGgGaAloD0MIucMmMnPbVECUhpRSlGgVTegDaBZHQFKYu0CzTnd1fZQoaAZoCWgPQwjWHYttUrNzwJSGlFKUaBVN+AFoFkdAUtGgdwNsnHV9lChoBmgJaA9DCIF5yJQPiSjAlIaUUpRoFU1GAWgWR0BS8EIHC4z8dX2UKGgGaAloD0MI/OB86lhCWcCUhpRSlGgVTXoBaBZHQFMVVWjoIOZ1fZQoaAZoCWgPQwirQZjbvV5NwJSGlFKUaBVLx2gWR0BTJnjMmnfmdX2UKGgGaAloD0MIHT1+b9NFV8CUhpRSlGgVS/doFkdAU5qKLsKLKnV9lChoBmgJaA9DCMxdS8gH7UdAlIaUUpRoFU3oA2gWR0BUFxBzFMqSdX2UKGgGaAloD0MIQ3QIHAn6YsCUhpRSlGgVTbQBaBZHQFRCn003wTd1fZQoaAZoCWgPQwik4ZS5+S5YQJSGlFKUaBVN6ANoFkdAVSd1+y7f53V9lChoBmgJaA9DCOmY84x9yfa/lIaUUpRoFUvjaBZHQFU7GD+R5kd1fZQoaAZoCWgPQwgepKfIIaxQwJSGlFKUaBVL/WgWR0BVUZfdAPd3dX2UKGgGaAloD0MIoMTnTrCtS8CUhpRSlGgVTRUBaBZHQFVq0vGp++d1fZQoaAZoCWgPQwjWHvZCARNVwJSGlFKUaBVL/WgWR0BVgfU8V58jdX2UKGgGaAloD0MIYi6p2m60QMCUhpRSlGgVTQYBaBZHQFWZkHUtqYZ1fZQoaAZoCWgPQwgLXvQVpA0yQJSGlFKUaBVLwWgWR0BVqfT5O8CgdX2UKGgGaAloD0MIxttKr82+QUCUhpRSlGgVTSABaBZHQFYhgfEGZ/l1fZQoaAZoCWgPQwhnKsQj8e5bQJSGlFKUaBVN6ANoFkdAVp6yLQ5WBHV9lChoBmgJaA9DCNasM74v/khAlIaUUpRoFUu5aBZHQFauuAqd6LR1fZQoaAZoCWgPQwi86ZYd4gNFwJSGlFKUaBVNYAFoFkdAVtBIatLcsXV9lChoBmgJaA9DCFqcMcwJDEBAlIaUUpRoFUvnaBZHQFbkLpzLfUF1fZQoaAZoCWgPQwjbT8b4MBFXQJSGlFKUaBVN6ANoFkdAV8h1KXfIjnV9lChoBmgJaA9DCG/Tn/1IEdK/lIaUUpRoFUuGaBZHQFfT3xWkrPN1fZQoaAZoCWgPQwhighq+hYEyQJSGlFKUaBVLn2gWR0BX4OxbB42TdX2UKGgGaAloD0MIn1inyvcUIUCUhpRSlGgVS9ZoFkdAV/Ma0hNdq3V9lChoBmgJaA9DCKkSZW8pqzfAlIaUUpRoFUuXaBZHQFf/T9KmKqJ1fZQoaAZoCWgPQwggKLfte4w4wJSGlFKUaBVL6mgWR0BYE3mFJxvOdX2UKGgGaAloD0MIHqSnyCFQQsCUhpRSlGgVS8hoFkdAWCSCvovBanV9lChoBmgJaA9DCAWoqWVr1SLAlIaUUpRoFUvVaBZHQFiTzcAR02d1fZQoaAZoCWgPQwihgO1gxOFawJSGlFKUaBVNOQFoFkdAWLGg13t8eHV9lChoBmgJaA9DCATG+gYmzlTAlIaUUpRoFU0yAWgWR0BYzfe54GD+dX2UKGgGaAloD0MILv8h/fYkUsCUhpRSlGgVTQUBaBZHQFjkom5UcXF1fZQoaAZoCWgPQwh39L9ciwRBQJSGlFKUaBVLo2gWR0BY8l5v99+gdX2UKGgGaAloD0MIaLEUyVciNMCUhpRSlGgVTRcBaBZHQFkKfms/6ft1fZQoaAZoCWgPQwitLxLacuBKwJSGlFKUaBVLrWgWR0BZGWICU5dXdX2UKGgGaAloD0MI+KdUibKJRUCUhpRSlGgVTegDaBZHQFoBl54W1tx1fZQoaAZoCWgPQwgK98q8VUNNwJSGlFKUaBVNKgFoFkdAWh+bnX/YJ3V9lChoBmgJaA9DCKeVQiCXXD5AlIaUUpRoFU3oA2gWR0BaoNvCMxXXdX2UKGgGaAloD0MIt+wQ/7BSWUCUhpRSlGgVTegDaBZHQFuud3jdYXB1fZQoaAZoCWgPQwjO/GoOEIwhwJSGlFKUaBVNMgFoFkdAW8wXQ+lj3HV9lChoBmgJaA9DCJFEL6NY/EPAlIaUUpRoFU0QAWgWR0Bb5ZvcafjCdX2UKGgGaAloD0MIA7aDEfv1V8CUhpRSlGgVTV8BaBZHQFwFnBciW3V1fZQoaAZoCWgPQwhCzZAqip8mwJSGlFKUaBVL+2gWR0BcHAydnTRZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2e4ce8c5b3bd6ec063499419d80ccf5dab1bd437aa0537b1bcf09c9294e8a92
3
+ size 146490
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49242c9950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49242c99e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49242c9a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49242c9b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f49242c9b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f49242c9c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49242c9cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f49242c9d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49242c9dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49242c9e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49242c9ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4924319930>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 51200,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1657795065.697084,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMg4IPwvuVyhD8Cc3O+kho3vv+2kb6K2BY+AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.02400000000000002,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdLLUer8jRsCUhpRSlIwBbJRLi4wBdJRHQEURr3TNMXd1fZQoaAZoCWgPQwiQgqeQKzUjQJSGlFKUaBVL52gWR0BFOaCtihFmdX2UKGgGaAloD0MIyNCxg8q8ZcCUhpRSlGgVS8FoFkdARVpGvwEyL3V9lChoBmgJaA9DCNmVlpF6gzNAlIaUUpRoFUuvaBZHQEV3guyu6mR1fZQoaAZoCWgPQwhOm3EaokIvwJSGlFKUaBVLnmgWR0BFkNnPE87qdX2UKGgGaAloD0MI4297gsQiTsCUhpRSlGgVS2RoFkdARaB8c+7lJnV9lChoBmgJaA9DCAaCABk6SVrAlIaUUpRoFUuGaBZHQEW2+yJKraN1fZQoaAZoCWgPQwgHtkqwOLJWwJSGlFKUaBVLiGgWR0BGhdfb9If9dX2UKGgGaAloD0MIrizRWWYNRcCUhpRSlGgVS1VoFkdARpMTzundf3V9lChoBmgJaA9DCEHUfQBSE0XAlIaUUpRoFUuraBZHQEavva11GLF1fZQoaAZoCWgPQwgtXFZhMzJewJSGlFKUaBVLdWgWR0BGwm9xp+MIdX2UKGgGaAloD0MICMiXUMETR8CUhpRSlGgVS2BoFkdARtIbdadMCnV9lChoBmgJaA9DCCqOA68WOmPAlIaUUpRoFUuKaBZHQEboFPBSDRN1fZQoaAZoCWgPQwj4b16c+I5iwJSGlFKUaBVLxWgWR0BHCOgYgq3FdX2UKGgGaAloD0MIvOmWHeLbN8CUhpRSlGgVS15oFkdARxf2VVxS53V9lChoBmgJaA9DCFTm5hvRL0/AlIaUUpRoFUu7aBZHQEc32Dg62fF1fZQoaAZoCWgPQwgn9WVppzZPwJSGlFKUaBVL0mgWR0BHXAu7HyVfdX2UKGgGaAloD0MIzA2GOqxGScCUhpRSlGgVS5poFkdAR3XAuZkTYnV9lChoBmgJaA9DCFpiZTTyM0zAlIaUUpRoFUuraBZHQEeRXUYsNDt1fZQoaAZoCWgPQwh+HqM88+5FwJSGlFKUaBVLymgWR0BHtBb4agmJdX2UKGgGaAloD0MIXKs97IWWPsCUhpRSlGgVS3poFkdAR8coQWepXXV9lChoBmgJaA9DCLMkQE0tw0/AlIaUUpRoFUuXaBZHQEidoCdSVGF1fZQoaAZoCWgPQwhRvqCFBAtnwJSGlFKUaBVLj2gWR0BItXKr7wazdX2UKGgGaAloD0MIPQ0YJP2MZ8CUhpRSlGgVS+poFkdASN/avicXnHV9lChoBmgJaA9DCFcm/FI/IWbAlIaUUpRoFU1oAWgWR0BJIknTiKixdX2UKGgGaAloD0MIEticg2e6QsCUhpRSlGgVS8hoFkdASUTZ8KG+K3V9lChoBmgJaA9DCMSXiSIkfmPAlIaUUpRoFUv0aBZHQEluXwb2lEZ1fZQoaAZoCWgPQwh6pwLueX4eQJSGlFKUaBVLdGgWR0BJgO5z5oGqdX2UKGgGaAloD0MIZd6q61BFIMCUhpRSlGgVS35oFkdASZTJSzgMt3V9lChoBmgJaA9DCOYF2EennjnAlIaUUpRoFUuLaBZHQEmriI+GGmF1fZQoaAZoCWgPQwgSUOEI0s5owJSGlFKUaBVLl2gWR0BJxWGIsRQKdX2UKGgGaAloD0MIEJTb9j3iTsCUhpRSlGgVS8FoFkdASebq8lHBlHV9lChoBmgJaA9DCF4robsk8kPAlIaUUpRoFUuDaBZHQEq09lEqlP91fZQoaAZoCWgPQwggY+5aQgIxwJSGlFKUaBVLhmgWR0BKywm/nGKidX2UKGgGaAloD0MIA2A8g4bRVsCUhpRSlGgVS8VoFkdASuytmthd+3V9lChoBmgJaA9DCH09X7Nc1iNAlIaUUpRoFUvnaBZHQEsW495hScd1fZQoaAZoCWgPQwhRMGMK1qx0wJSGlFKUaBVNGgFoFkdAS0qNfgJkXnV9lChoBmgJaA9DCOiGpuz0dzTAlIaUUpRoFUudaBZHQEtlddmg8KZ1fZQoaAZoCWgPQwh79fHQd8tuwJSGlFKUaBVL4WgWR0BLi+4b0e2edX2UKGgGaAloD0MIXr2KjA4GQ8CUhpRSlGgVS7hoFkdAS6t03fhuO3V9lChoBmgJaA9DCEgbR6zFoVDAlIaUUpRoFUvJaBZHQEvN7zkIX0p1fZQoaAZoCWgPQwgoRSv3Ass2wJSGlFKUaBVLbmgWR0BL33wTdtVJdX2UKGgGaAloD0MIFJfjFQi3dcCUhpRSlGgVS7ZoFkdAS/4vzvqkdnV9lChoBmgJaA9DCONrzywJ8CzAlIaUUpRoFU3oA2gWR0BNsaX8fmtAdX2UKGgGaAloD0MIjGg7pu6Fb8CUhpRSlGgVS91oFkdATdhr1uivgXV9lChoBmgJaA9DCHUAxF29BEnAlIaUUpRoFU03AWgWR0BOECl7+kxidX2UKGgGaAloD0MIj+TyH9LgUkCUhpRSlGgVTegDaBZHQE+9rNW2gFp1fZQoaAZoCWgPQwj8GkmCcBtGwJSGlFKUaBVLxGgWR0BP35cTrVvudX2UKGgGaAloD0MInUzcKoidRECUhpRSlGgVS6hoFkdAT/sTviLl3nV9lChoBmgJaA9DCDtUU5J1GAVAlIaUUpRoFUusaBZHQFALoduHerN1fZQoaAZoCWgPQwjEJjJzgbM6wJSGlFKUaBVL72gWR0BQIEsjFAE/dX2UKGgGaAloD0MI2sngKHlxNMCUhpRSlGgVS5xoFkdAUC27xusLfHV9lChoBmgJaA9DCGGlgoqqbxpAlIaUUpRoFUvraBZHQFBCESM98qp1fZQoaAZoCWgPQwgvNNdppLlFQJSGlFKUaBVLpWgWR0BQT7CSA6MjdX2UKGgGaAloD0MIkBK7trdb8D+UhpRSlGgVS7xoFkdAUF+u7pV0cXV9lChoBmgJaA9DCGDLK9fb9E1AlIaUUpRoFU3oA2gWR0BRTcpkPMB7dX2UKGgGaAloD0MIDWyVYHEwLkCUhpRSlGgVS+9oFkdAUWLDEWIoE3V9lChoBmgJaA9DCOzbSUT49xrAlIaUUpRoFU1cAWgWR0BRhiAc1fmcdX2UKGgGaAloD0MIucMmMnPbVECUhpRSlGgVTegDaBZHQFKYu0CzTnd1fZQoaAZoCWgPQwjWHYttUrNzwJSGlFKUaBVN+AFoFkdAUtGgdwNsnHV9lChoBmgJaA9DCIF5yJQPiSjAlIaUUpRoFU1GAWgWR0BS8EIHC4z8dX2UKGgGaAloD0MI/OB86lhCWcCUhpRSlGgVTXoBaBZHQFMVVWjoIOZ1fZQoaAZoCWgPQwirQZjbvV5NwJSGlFKUaBVLx2gWR0BTJnjMmnfmdX2UKGgGaAloD0MIHT1+b9NFV8CUhpRSlGgVS/doFkdAU5qKLsKLKnV9lChoBmgJaA9DCMxdS8gH7UdAlIaUUpRoFU3oA2gWR0BUFxBzFMqSdX2UKGgGaAloD0MIQ3QIHAn6YsCUhpRSlGgVTbQBaBZHQFRCn003wTd1fZQoaAZoCWgPQwik4ZS5+S5YQJSGlFKUaBVN6ANoFkdAVSd1+y7f53V9lChoBmgJaA9DCOmY84x9yfa/lIaUUpRoFUvjaBZHQFU7GD+R5kd1fZQoaAZoCWgPQwgepKfIIaxQwJSGlFKUaBVL/WgWR0BVUZfdAPd3dX2UKGgGaAloD0MIoMTnTrCtS8CUhpRSlGgVTRUBaBZHQFVq0vGp++d1fZQoaAZoCWgPQwjWHvZCARNVwJSGlFKUaBVL/WgWR0BVgfU8V58jdX2UKGgGaAloD0MIYi6p2m60QMCUhpRSlGgVTQYBaBZHQFWZkHUtqYZ1fZQoaAZoCWgPQwgLXvQVpA0yQJSGlFKUaBVLwWgWR0BVqfT5O8CgdX2UKGgGaAloD0MIxttKr82+QUCUhpRSlGgVTSABaBZHQFYhgfEGZ/l1fZQoaAZoCWgPQwhnKsQj8e5bQJSGlFKUaBVN6ANoFkdAVp6yLQ5WBHV9lChoBmgJaA9DCNasM74v/khAlIaUUpRoFUu5aBZHQFauuAqd6LR1fZQoaAZoCWgPQwi86ZYd4gNFwJSGlFKUaBVNYAFoFkdAVtBIatLcsXV9lChoBmgJaA9DCFqcMcwJDEBAlIaUUpRoFUvnaBZHQFbkLpzLfUF1fZQoaAZoCWgPQwjbT8b4MBFXQJSGlFKUaBVN6ANoFkdAV8h1KXfIjnV9lChoBmgJaA9DCG/Tn/1IEdK/lIaUUpRoFUuGaBZHQFfT3xWkrPN1fZQoaAZoCWgPQwhighq+hYEyQJSGlFKUaBVLn2gWR0BX4OxbB42TdX2UKGgGaAloD0MIn1inyvcUIUCUhpRSlGgVS9ZoFkdAV/Ma0hNdq3V9lChoBmgJaA9DCKkSZW8pqzfAlIaUUpRoFUuXaBZHQFf/T9KmKqJ1fZQoaAZoCWgPQwggKLfte4w4wJSGlFKUaBVL6mgWR0BYE3mFJxvOdX2UKGgGaAloD0MIHqSnyCFQQsCUhpRSlGgVS8hoFkdAWCSCvovBanV9lChoBmgJaA9DCAWoqWVr1SLAlIaUUpRoFUvVaBZHQFiTzcAR02d1fZQoaAZoCWgPQwihgO1gxOFawJSGlFKUaBVNOQFoFkdAWLGg13t8eHV9lChoBmgJaA9DCATG+gYmzlTAlIaUUpRoFU0yAWgWR0BYzfe54GD+dX2UKGgGaAloD0MILv8h/fYkUsCUhpRSlGgVTQUBaBZHQFjkom5UcXF1fZQoaAZoCWgPQwh39L9ciwRBQJSGlFKUaBVLo2gWR0BY8l5v99+gdX2UKGgGaAloD0MIaLEUyVciNMCUhpRSlGgVTRcBaBZHQFkKfms/6ft1fZQoaAZoCWgPQwitLxLacuBKwJSGlFKUaBVLrWgWR0BZGWICU5dXdX2UKGgGaAloD0MI+KdUibKJRUCUhpRSlGgVTegDaBZHQFoBl54W1tx1fZQoaAZoCWgPQwgK98q8VUNNwJSGlFKUaBVNKgFoFkdAWh+bnX/YJ3V9lChoBmgJaA9DCKeVQiCXXD5AlIaUUpRoFU3oA2gWR0BaoNvCMxXXdX2UKGgGaAloD0MIt+wQ/7BSWUCUhpRSlGgVTegDaBZHQFuud3jdYXB1fZQoaAZoCWgPQwjO/GoOEIwhwJSGlFKUaBVNMgFoFkdAW8wXQ+lj3HV9lChoBmgJaA9DCJFEL6NY/EPAlIaUUpRoFU0QAWgWR0Bb5ZvcafjCdX2UKGgGaAloD0MIA7aDEfv1V8CUhpRSlGgVTV8BaBZHQFwFnBciW3V1fZQoaAZoCWgPQwhCzZAqip8mwJSGlFKUaBVL+2gWR0BcHAydnTRZdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 250,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ef27f1053c0204fbeef7c35ea44721cff1f19cb1bf6ef95db4404659f29881
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:684df336c7914f4131e3773607bb6b0b64b910db62c2eeea275a7772001e2800
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (69.8 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -622.9377482000001, "std_reward": 219.73016666623394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-14T10:39:49.291631"}