File size: 3,809 Bytes
bcb0573
 
 
9a8869b
bcb0573
 
6c4a2e8
bcb0573
 
 
 
 
 
 
 
 
25fc841
bcb0573
 
25fc841
bcb0573
 
25fc841
bcb0573
1d03e65
bcb0573
 
1d03e65
bcb0573
25fc841
bcb0573
1d03e65
bcb0573
 
1d03e65
bcb0573
25fc841
bcb0573
1d03e65
bcb0573
 
1d03e65
 
25fc841
bcb0573
1d03e65
bcb0573
 
1d03e65
 
25fc841
bcb0573
fb44769
 
 
 
 
 
 
25fc841
 
fb44769
 
25fc841
 
fb44769
 
 
 
 
 
 
25fc841
fb44769
 
 
25fc841
fb44769
 
 
 
 
 
 
 
 
 
9a8869b
 
 
25fc841
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_core_web_lg
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.8636641533
    - name: NER Recall
      type: recall
      value: 0.8489583333
    - name: NER F Score
      type: f_score
      value: 0.8562481059
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9734404547
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.9204363007
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.9023174614
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.90444794
---
### Details: https://spacy.io/models/en#en_core_web_lg

English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.

| Feature | Description |
| --- | --- |
| **Name** | `en_core_web_lg` |
| **Version** | `3.4.0` |
| **spaCy** | `>=3.4.0,<3.5.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (113 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TOKEN_P` | 99.57 |
| `TOKEN_R` | 99.58 |
| `TOKEN_F` | 99.57 |
| `TAG_ACC` | 97.34 |
| `SENTS_P` | 91.79 |
| `SENTS_R` | 89.14 |
| `SENTS_F` | 90.44 |
| `DEP_UAS` | 92.04 |
| `DEP_LAS` | 90.23 |
| `ENTS_P` | 86.37 |
| `ENTS_R` | 84.90 |
| `ENTS_F` | 85.62 |