File size: 5,683 Bytes
f96be1d
796dea5
 
f96be1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8035b6
f96be1d
 
 
 
 
796dea5
f96be1d
 
 
 
 
 
 
796dea5
f96be1d
 
 
 
 
796dea5
f96be1d
 
 
 
 
 
 
 
 
 
 
 
a8035b6
 
f96be1d
 
a8035b6
f96be1d
 
 
 
 
 
796dea5
f96be1d
 
 
 
 
 
 
 
 
 
 
 
a8035b6
 
f96be1d
 
a8035b6
f96be1d
 
 
383907d
de00f6d
796dea5
 
f96be1d
 
de00f6d
f96be1d
de00f6d
f96be1d
 
a8035b6
 
f96be1d
 
a8035b6
f96be1d
 
a8035b6
 
 
f96be1d
 
a8035b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796dea5
a8035b6
f96be1d
796dea5
 
a8035b6
 
 
 
 
796dea5
f96be1d
 
 
 
796dea5
f96be1d
796dea5
 
f96be1d
 
 
 
796dea5
f96be1d
796dea5
f96be1d
796dea5
f96be1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a134d22
f96be1d
 
a8035b6
 
f96be1d
a8035b6
 
f96be1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796dea5
f96be1d
 
 
 
796dea5
f96be1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8035b6
 
 
 
 
 
 
 
 
 
 
 
f96be1d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
[paths]
train = null
dev = null
vectors = null
init_tok2vec = null

[system]
gpu_allocator = "pytorch"
seed = 1

[nlp]
lang = "en"
pipeline = ["transformer","tagger","parser","attribute_ruler","lemmatizer","ner"]
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 64
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}

[components]

[components.attribute_ruler]
factory = "attribute_ruler"
scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"}
validate = false

[components.lemmatizer]
factory = "lemmatizer"
mode = "rule"
model = null
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}

[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy-curated-transformers.LastTransformerLayerListener.v1"
width = ${components.transformer.model.hidden_width}
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
grad_factor = 1.0

[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100

[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null

[components.parser.model.tok2vec]
@architectures = "spacy-curated-transformers.LastTransformerLayerListener.v1"
width = ${components.transformer.model.hidden_width}
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
grad_factor = 1.0

[components.tagger]
factory = "tagger"
label_smoothing = 0.0
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}

[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false

[components.tagger.model.tok2vec]
@architectures = "spacy-curated-transformers.LastTransformerLayerListener.v1"
width = ${components.transformer.model.hidden_width}
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
grad_factor = 1.0

[components.transformer]
factory = "curated_transformer"
all_layer_outputs = false
frozen = false

[components.transformer.model]
@architectures = "spacy-curated-transformers.RobertaTransformer.v1"
vocab_size = 50265
hidden_width = 768
piece_encoder = {"@architectures":"spacy-curated-transformers.ByteBpeEncoder.v1"}
attention_probs_dropout_prob = 0.1
hidden_act = "gelu"
hidden_dropout_prob = 0.1
intermediate_width = 3072
layer_norm_eps = 0.00001
max_position_embeddings = 514
model_max_length = 512
num_attention_heads = 12
num_hidden_layers = 12
padding_idx = 1
type_vocab_size = 1
torchscript = false
mixed_precision = false
wrapped_listener = null

[components.transformer.model.grad_scaler_config]

[components.transformer.model.with_spans]
@architectures = "spacy-curated-transformers.WithStridedSpans.v1"
stride = 104
window = 144
batch_size = 384

[corpora]

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null

[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system:seed}
gpu_allocator = ${system:gpu_allocator}
dropout = 0.1
accumulate_gradient = 3
patience = 5000
max_epochs = 0
max_steps = 20000
eval_frequency = 1000
frozen_components = []
before_to_disk = null
annotating_components = []
before_update = null

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
size = 2000
tolerance = 0.2
get_length = null

[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001

[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005

[training.score_weights]
tag_acc = 0.16
dep_uas = 0.0
dep_las = 0.16
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = 0.02
lemma_acc = 0.5
ents_f = 0.16
ents_p = 0.0
ents_r = 0.0
ents_per_type = null
speed = 0.0

[pretraining]

[initialize]
vocab_data = null
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
before_init = null
after_init = null

[initialize.components]

[initialize.components.ner]

[initialize.components.ner.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/ner.json"
require = false

[initialize.components.parser]

[initialize.components.parser.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/parser.json"
require = false

[initialize.components.tagger]

[initialize.components.tagger.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/tagger.json"
require = false

[initialize.components.transformer]

[initialize.components.transformer.encoder_loader]
@model_loaders = "spacy-curated-transformers.HFTransformerEncoderLoader.v1"
name = "roberta-base"
revision = "main"

[initialize.components.transformer.piecer_loader]
@model_loaders = "spacy-curated-transformers.HFPieceEncoderLoader.v1"
name = "roberta-base"
revision = "main"

[initialize.lookups]
@misc = "spacy.LookupsDataLoader.v1"
lang = ${nlp.lang}
tables = ["lexeme_norm"]

[initialize.tokenizer]