Add SetFit model
Browse files- 1_Pooling/config.json +9 -0
- README.md +849 -0
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,849 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
widget:
|
14 |
+
- text: Google Maps
|
15 |
+
- text: 'IN NEED OF OBEDIENCE CLASSES? '
|
16 |
+
- text: ' .modal-content '
|
17 |
+
- text: 'U Pere ris, AM sees FULLUW! \SfkE Ka £'' | '
|
18 |
+
- text: 'exclusively MAX FACTOR Beeiting new lipstick concept makes all others obsolete! '
|
19 |
+
pipeline_tag: text-classification
|
20 |
+
inference: true
|
21 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
22 |
+
model-index:
|
23 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
24 |
+
results:
|
25 |
+
- task:
|
26 |
+
type: text-classification
|
27 |
+
name: Text Classification
|
28 |
+
dataset:
|
29 |
+
name: Unknown
|
30 |
+
type: unknown
|
31 |
+
split: test
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 0.5003125
|
35 |
+
name: Accuracy
|
36 |
+
- type: precision
|
37 |
+
value: 0.0
|
38 |
+
name: Precision
|
39 |
+
- type: recall
|
40 |
+
value: 0.0
|
41 |
+
name: Recall
|
42 |
+
- type: f1
|
43 |
+
value: 0.0
|
44 |
+
name: F1
|
45 |
+
---
|
46 |
+
|
47 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
48 |
+
|
49 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
50 |
+
|
51 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
52 |
+
|
53 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
54 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
55 |
+
|
56 |
+
## Model Details
|
57 |
+
|
58 |
+
### Model Description
|
59 |
+
- **Model Type:** SetFit
|
60 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
61 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
62 |
+
- **Maximum Sequence Length:** 512 tokens
|
63 |
+
- **Number of Classes:** 2 classes
|
64 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
65 |
+
<!-- - **Language:** Unknown -->
|
66 |
+
<!-- - **License:** Unknown -->
|
67 |
+
|
68 |
+
### Model Sources
|
69 |
+
|
70 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
71 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
72 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
73 |
+
|
74 |
+
### Model Labels
|
75 |
+
| Label | Examples |
|
76 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
77 |
+
| False | <ul><li>'Persistent'</li><li>'Forensic Contract'</li><li>'View Vendor List'</li></ul> |
|
78 |
+
| True | <ul><li>'winming camp at Taj Deccan. Morning and evening batches. Start today. Become a champ. Monday to Friday till 3 Ist march '</li><li>'您的反馈已记录,我们将努力改善您的浏览体验。'</li><li>'Ve ConcerrualL DESIGNER '</li></ul> |
|
79 |
+
|
80 |
+
## Evaluation
|
81 |
+
|
82 |
+
### Metrics
|
83 |
+
| Label | Accuracy | Precision | Recall | F1 |
|
84 |
+
|:--------|:---------|:----------|:-------|:----|
|
85 |
+
| **all** | 0.5003 | 0.0 | 0.0 | 0.0 |
|
86 |
+
|
87 |
+
## Uses
|
88 |
+
|
89 |
+
### Direct Use for Inference
|
90 |
+
|
91 |
+
First install the SetFit library:
|
92 |
+
|
93 |
+
```bash
|
94 |
+
pip install setfit
|
95 |
+
```
|
96 |
+
|
97 |
+
Then you can load this model and run inference.
|
98 |
+
|
99 |
+
```python
|
100 |
+
from setfit import SetFitModel
|
101 |
+
|
102 |
+
# Download from the 🤗 Hub
|
103 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
104 |
+
# Run inference
|
105 |
+
preds = model("Google Maps")
|
106 |
+
```
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Downstream Use
|
110 |
+
|
111 |
+
*List how someone could finetune this model on their own dataset.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Out-of-Scope Use
|
116 |
+
|
117 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
## Bias, Risks and Limitations
|
122 |
+
|
123 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Recommendations
|
128 |
+
|
129 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
## Training Details
|
133 |
+
|
134 |
+
### Training Set Metrics
|
135 |
+
| Training set | Min | Median | Max |
|
136 |
+
|:-------------|:----|:-------|:----|
|
137 |
+
| Word count | 1 | 8.5055 | 706 |
|
138 |
+
|
139 |
+
| Label | Training Sample Count |
|
140 |
+
|:------|:----------------------|
|
141 |
+
| False | 6399 |
|
142 |
+
| True | 6401 |
|
143 |
+
|
144 |
+
### Training Hyperparameters
|
145 |
+
- batch_size: (16, 2)
|
146 |
+
- num_epochs: (1, 16)
|
147 |
+
- max_steps: -1
|
148 |
+
- sampling_strategy: oversampling
|
149 |
+
- num_iterations: 20
|
150 |
+
- body_learning_rate: (2e-05, 1e-05)
|
151 |
+
- head_learning_rate: 0.01
|
152 |
+
- loss: CosineSimilarityLoss
|
153 |
+
- distance_metric: cosine_distance
|
154 |
+
- margin: 0.25
|
155 |
+
- end_to_end: False
|
156 |
+
- use_amp: False
|
157 |
+
- warmup_proportion: 0.1
|
158 |
+
- seed: 42
|
159 |
+
- run_name: PG-OCR-test-1
|
160 |
+
- eval_max_steps: -1
|
161 |
+
- load_best_model_at_end: False
|
162 |
+
|
163 |
+
### Training Results
|
164 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
165 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
166 |
+
| 0.0000 | 1 | 0.5 | - |
|
167 |
+
| 0.0016 | 50 | 0.5 | - |
|
168 |
+
| 0.0031 | 100 | 0.5 | - |
|
169 |
+
| 0.0047 | 150 | 0.5 | - |
|
170 |
+
| 0.0063 | 200 | 0.5 | - |
|
171 |
+
| 0.0078 | 250 | 0.5 | - |
|
172 |
+
| 0.0094 | 300 | 0.5 | - |
|
173 |
+
| 0.0109 | 350 | 0.5 | - |
|
174 |
+
| 0.0125 | 400 | 0.5 | - |
|
175 |
+
| 0.0141 | 450 | 0.5 | - |
|
176 |
+
| 0.0156 | 500 | 0.5 | - |
|
177 |
+
| 0.0172 | 550 | 0.5 | - |
|
178 |
+
| 0.0187 | 600 | 0.5 | - |
|
179 |
+
| 0.0203 | 650 | 0.5 | - |
|
180 |
+
| 0.0219 | 700 | 0.5 | - |
|
181 |
+
| 0.0234 | 750 | 0.5 | - |
|
182 |
+
| 0.025 | 800 | 0.5 | - |
|
183 |
+
| 0.0266 | 850 | 0.5 | - |
|
184 |
+
| 0.0281 | 900 | 0.5 | - |
|
185 |
+
| 0.0297 | 950 | 0.5 | - |
|
186 |
+
| 0.0312 | 1000 | 0.5 | - |
|
187 |
+
| 0.0328 | 1050 | 0.5 | - |
|
188 |
+
| 0.0344 | 1100 | 0.5 | - |
|
189 |
+
| 0.0359 | 1150 | 0.5 | - |
|
190 |
+
| 0.0375 | 1200 | 0.5 | - |
|
191 |
+
| 0.0391 | 1250 | 0.5 | - |
|
192 |
+
| 0.0406 | 1300 | 0.5 | - |
|
193 |
+
| 0.0422 | 1350 | 0.5 | - |
|
194 |
+
| 0.0437 | 1400 | 0.5 | - |
|
195 |
+
| 0.0453 | 1450 | 0.5 | - |
|
196 |
+
| 0.0469 | 1500 | 0.5 | - |
|
197 |
+
| 0.0484 | 1550 | 0.5 | - |
|
198 |
+
| 0.05 | 1600 | 0.5 | - |
|
199 |
+
| 0.0516 | 1650 | 0.5 | - |
|
200 |
+
| 0.0531 | 1700 | 0.5 | - |
|
201 |
+
| 0.0547 | 1750 | 0.5 | - |
|
202 |
+
| 0.0563 | 1800 | 0.5 | - |
|
203 |
+
| 0.0578 | 1850 | 0.5 | - |
|
204 |
+
| 0.0594 | 1900 | 0.5 | - |
|
205 |
+
| 0.0609 | 1950 | 0.5 | - |
|
206 |
+
| 0.0625 | 2000 | 0.5 | - |
|
207 |
+
| 0.0641 | 2050 | 0.5 | - |
|
208 |
+
| 0.0656 | 2100 | 0.5 | - |
|
209 |
+
| 0.0672 | 2150 | 0.5 | - |
|
210 |
+
| 0.0688 | 2200 | 0.5 | - |
|
211 |
+
| 0.0703 | 2250 | 0.5 | - |
|
212 |
+
| 0.0719 | 2300 | 0.5 | - |
|
213 |
+
| 0.0734 | 2350 | 0.5 | - |
|
214 |
+
| 0.075 | 2400 | 0.5 | - |
|
215 |
+
| 0.0766 | 2450 | 0.5 | - |
|
216 |
+
| 0.0781 | 2500 | 0.5 | - |
|
217 |
+
| 0.0797 | 2550 | 0.5 | - |
|
218 |
+
| 0.0813 | 2600 | 0.5 | - |
|
219 |
+
| 0.0828 | 2650 | 0.5 | - |
|
220 |
+
| 0.0844 | 2700 | 0.5 | - |
|
221 |
+
| 0.0859 | 2750 | 0.5 | - |
|
222 |
+
| 0.0875 | 2800 | 0.5 | - |
|
223 |
+
| 0.0891 | 2850 | 0.5 | - |
|
224 |
+
| 0.0906 | 2900 | 0.5 | - |
|
225 |
+
| 0.0922 | 2950 | 0.5 | - |
|
226 |
+
| 0.0938 | 3000 | 0.5 | - |
|
227 |
+
| 0.0953 | 3050 | 0.5 | - |
|
228 |
+
| 0.0969 | 3100 | 0.5 | - |
|
229 |
+
| 0.0984 | 3150 | 0.5 | - |
|
230 |
+
| 0.1 | 3200 | 0.5 | - |
|
231 |
+
| 0.1016 | 3250 | 0.5 | - |
|
232 |
+
| 0.1031 | 3300 | 0.5 | - |
|
233 |
+
| 0.1047 | 3350 | 0.5 | - |
|
234 |
+
| 0.1062 | 3400 | 0.5 | - |
|
235 |
+
| 0.1078 | 3450 | 0.5 | - |
|
236 |
+
| 0.1094 | 3500 | 0.5 | - |
|
237 |
+
| 0.1109 | 3550 | 0.5 | - |
|
238 |
+
| 0.1125 | 3600 | 0.5 | - |
|
239 |
+
| 0.1141 | 3650 | 0.5 | - |
|
240 |
+
| 0.1156 | 3700 | 0.5 | - |
|
241 |
+
| 0.1172 | 3750 | 0.5 | - |
|
242 |
+
| 0.1187 | 3800 | 0.5 | - |
|
243 |
+
| 0.1203 | 3850 | 0.5 | - |
|
244 |
+
| 0.1219 | 3900 | 0.5 | - |
|
245 |
+
| 0.1234 | 3950 | 0.5 | - |
|
246 |
+
| 0.125 | 4000 | 0.5 | - |
|
247 |
+
| 0.1266 | 4050 | 0.5 | - |
|
248 |
+
| 0.1281 | 4100 | 0.5 | - |
|
249 |
+
| 0.1297 | 4150 | 0.5 | - |
|
250 |
+
| 0.1313 | 4200 | 0.5 | - |
|
251 |
+
| 0.1328 | 4250 | 0.5 | - |
|
252 |
+
| 0.1344 | 4300 | 0.5 | - |
|
253 |
+
| 0.1359 | 4350 | 0.5 | - |
|
254 |
+
| 0.1375 | 4400 | 0.5 | - |
|
255 |
+
| 0.1391 | 4450 | 0.5 | - |
|
256 |
+
| 0.1406 | 4500 | 0.5 | - |
|
257 |
+
| 0.1422 | 4550 | 0.5 | - |
|
258 |
+
| 0.1437 | 4600 | 0.5 | - |
|
259 |
+
| 0.1453 | 4650 | 0.5 | - |
|
260 |
+
| 0.1469 | 4700 | 0.5 | - |
|
261 |
+
| 0.1484 | 4750 | 0.5 | - |
|
262 |
+
| 0.15 | 4800 | 0.5 | - |
|
263 |
+
| 0.1516 | 4850 | 0.5 | - |
|
264 |
+
| 0.1531 | 4900 | 0.5 | - |
|
265 |
+
| 0.1547 | 4950 | 0.5 | - |
|
266 |
+
| 0.1562 | 5000 | 0.5 | 0.5 |
|
267 |
+
| 0.1578 | 5050 | 0.5 | - |
|
268 |
+
| 0.1594 | 5100 | 0.5 | - |
|
269 |
+
| 0.1609 | 5150 | 0.5 | - |
|
270 |
+
| 0.1625 | 5200 | 0.5 | - |
|
271 |
+
| 0.1641 | 5250 | 0.5 | - |
|
272 |
+
| 0.1656 | 5300 | 0.5 | - |
|
273 |
+
| 0.1672 | 5350 | 0.5 | - |
|
274 |
+
| 0.1688 | 5400 | 0.5 | - |
|
275 |
+
| 0.1703 | 5450 | 0.5 | - |
|
276 |
+
| 0.1719 | 5500 | 0.5 | - |
|
277 |
+
| 0.1734 | 5550 | 0.5 | - |
|
278 |
+
| 0.175 | 5600 | 0.5 | - |
|
279 |
+
| 0.1766 | 5650 | 0.5 | - |
|
280 |
+
| 0.1781 | 5700 | 0.5 | - |
|
281 |
+
| 0.1797 | 5750 | 0.5 | - |
|
282 |
+
| 0.1812 | 5800 | 0.5 | - |
|
283 |
+
| 0.1828 | 5850 | 0.5 | - |
|
284 |
+
| 0.1844 | 5900 | 0.5 | - |
|
285 |
+
| 0.1859 | 5950 | 0.5 | - |
|
286 |
+
| 0.1875 | 6000 | 0.5 | - |
|
287 |
+
| 0.1891 | 6050 | 0.5 | - |
|
288 |
+
| 0.1906 | 6100 | 0.5 | - |
|
289 |
+
| 0.1922 | 6150 | 0.5 | - |
|
290 |
+
| 0.1938 | 6200 | 0.5 | - |
|
291 |
+
| 0.1953 | 6250 | 0.5 | - |
|
292 |
+
| 0.1969 | 6300 | 0.5 | - |
|
293 |
+
| 0.1984 | 6350 | 0.5 | - |
|
294 |
+
| 0.2 | 6400 | 0.5 | - |
|
295 |
+
| 0.2016 | 6450 | 0.5 | - |
|
296 |
+
| 0.2031 | 6500 | 0.5 | - |
|
297 |
+
| 0.2047 | 6550 | 0.5 | - |
|
298 |
+
| 0.2062 | 6600 | 0.5 | - |
|
299 |
+
| 0.2078 | 6650 | 0.5 | - |
|
300 |
+
| 0.2094 | 6700 | 0.5 | - |
|
301 |
+
| 0.2109 | 6750 | 0.5 | - |
|
302 |
+
| 0.2125 | 6800 | 0.5 | - |
|
303 |
+
| 0.2141 | 6850 | 0.5 | - |
|
304 |
+
| 0.2156 | 6900 | 0.5 | - |
|
305 |
+
| 0.2172 | 6950 | 0.5 | - |
|
306 |
+
| 0.2188 | 7000 | 0.5 | - |
|
307 |
+
| 0.2203 | 7050 | 0.5 | - |
|
308 |
+
| 0.2219 | 7100 | 0.5 | - |
|
309 |
+
| 0.2234 | 7150 | 0.5 | - |
|
310 |
+
| 0.225 | 7200 | 0.5 | - |
|
311 |
+
| 0.2266 | 7250 | 0.5 | - |
|
312 |
+
| 0.2281 | 7300 | 0.5 | - |
|
313 |
+
| 0.2297 | 7350 | 0.5 | - |
|
314 |
+
| 0.2313 | 7400 | 0.5 | - |
|
315 |
+
| 0.2328 | 7450 | 0.5 | - |
|
316 |
+
| 0.2344 | 7500 | 0.5 | - |
|
317 |
+
| 0.2359 | 7550 | 0.5 | - |
|
318 |
+
| 0.2375 | 7600 | 0.5 | - |
|
319 |
+
| 0.2391 | 7650 | 0.5 | - |
|
320 |
+
| 0.2406 | 7700 | 0.5 | - |
|
321 |
+
| 0.2422 | 7750 | 0.5 | - |
|
322 |
+
| 0.2437 | 7800 | 0.5 | - |
|
323 |
+
| 0.2453 | 7850 | 0.5 | - |
|
324 |
+
| 0.2469 | 7900 | 0.5 | - |
|
325 |
+
| 0.2484 | 7950 | 0.5 | - |
|
326 |
+
| 0.25 | 8000 | 0.5 | - |
|
327 |
+
| 0.2516 | 8050 | 0.5 | - |
|
328 |
+
| 0.2531 | 8100 | 0.5 | - |
|
329 |
+
| 0.2547 | 8150 | 0.5 | - |
|
330 |
+
| 0.2562 | 8200 | 0.5 | - |
|
331 |
+
| 0.2578 | 8250 | 0.5 | - |
|
332 |
+
| 0.2594 | 8300 | 0.5 | - |
|
333 |
+
| 0.2609 | 8350 | 0.5 | - |
|
334 |
+
| 0.2625 | 8400 | 0.5 | - |
|
335 |
+
| 0.2641 | 8450 | 0.5 | - |
|
336 |
+
| 0.2656 | 8500 | 0.5 | - |
|
337 |
+
| 0.2672 | 8550 | 0.5 | - |
|
338 |
+
| 0.2687 | 8600 | 0.5 | - |
|
339 |
+
| 0.2703 | 8650 | 0.5 | - |
|
340 |
+
| 0.2719 | 8700 | 0.5 | - |
|
341 |
+
| 0.2734 | 8750 | 0.5 | - |
|
342 |
+
| 0.275 | 8800 | 0.5 | - |
|
343 |
+
| 0.2766 | 8850 | 0.5 | - |
|
344 |
+
| 0.2781 | 8900 | 0.5 | - |
|
345 |
+
| 0.2797 | 8950 | 0.5 | - |
|
346 |
+
| 0.2812 | 9000 | 0.5 | - |
|
347 |
+
| 0.2828 | 9050 | 0.5 | - |
|
348 |
+
| 0.2844 | 9100 | 0.5 | - |
|
349 |
+
| 0.2859 | 9150 | 0.5 | - |
|
350 |
+
| 0.2875 | 9200 | 0.5 | - |
|
351 |
+
| 0.2891 | 9250 | 0.5 | - |
|
352 |
+
| 0.2906 | 9300 | 0.5 | - |
|
353 |
+
| 0.2922 | 9350 | 0.5 | - |
|
354 |
+
| 0.2938 | 9400 | 0.5 | - |
|
355 |
+
| 0.2953 | 9450 | 0.5 | - |
|
356 |
+
| 0.2969 | 9500 | 0.5 | - |
|
357 |
+
| 0.2984 | 9550 | 0.5 | - |
|
358 |
+
| 0.3 | 9600 | 0.5 | - |
|
359 |
+
| 0.3016 | 9650 | 0.5 | - |
|
360 |
+
| 0.3031 | 9700 | 0.5 | - |
|
361 |
+
| 0.3047 | 9750 | 0.5 | - |
|
362 |
+
| 0.3063 | 9800 | 0.5 | - |
|
363 |
+
| 0.3078 | 9850 | 0.5 | - |
|
364 |
+
| 0.3094 | 9900 | 0.5 | - |
|
365 |
+
| 0.3109 | 9950 | 0.5 | - |
|
366 |
+
| 0.3125 | 10000 | 0.5 | 0.5 |
|
367 |
+
| 0.3141 | 10050 | 0.5 | - |
|
368 |
+
| 0.3156 | 10100 | 0.5 | - |
|
369 |
+
| 0.3172 | 10150 | 0.5 | - |
|
370 |
+
| 0.3187 | 10200 | 0.5 | - |
|
371 |
+
| 0.3203 | 10250 | 0.5 | - |
|
372 |
+
| 0.3219 | 10300 | 0.5 | - |
|
373 |
+
| 0.3234 | 10350 | 0.5 | - |
|
374 |
+
| 0.325 | 10400 | 0.5 | - |
|
375 |
+
| 0.3266 | 10450 | 0.5 | - |
|
376 |
+
| 0.3281 | 10500 | 0.5 | - |
|
377 |
+
| 0.3297 | 10550 | 0.5 | - |
|
378 |
+
| 0.3312 | 10600 | 0.5 | - |
|
379 |
+
| 0.3328 | 10650 | 0.5 | - |
|
380 |
+
| 0.3344 | 10700 | 0.5 | - |
|
381 |
+
| 0.3359 | 10750 | 0.5 | - |
|
382 |
+
| 0.3375 | 10800 | 0.5 | - |
|
383 |
+
| 0.3391 | 10850 | 0.5 | - |
|
384 |
+
| 0.3406 | 10900 | 0.5 | - |
|
385 |
+
| 0.3422 | 10950 | 0.5 | - |
|
386 |
+
| 0.3438 | 11000 | 0.5 | - |
|
387 |
+
| 0.3453 | 11050 | 0.5 | - |
|
388 |
+
| 0.3469 | 11100 | 0.5 | - |
|
389 |
+
| 0.3484 | 11150 | 0.5 | - |
|
390 |
+
| 0.35 | 11200 | 0.5 | - |
|
391 |
+
| 0.3516 | 11250 | 0.5 | - |
|
392 |
+
| 0.3531 | 11300 | 0.5 | - |
|
393 |
+
| 0.3547 | 11350 | 0.5 | - |
|
394 |
+
| 0.3563 | 11400 | 0.5 | - |
|
395 |
+
| 0.3578 | 11450 | 0.5 | - |
|
396 |
+
| 0.3594 | 11500 | 0.5 | - |
|
397 |
+
| 0.3609 | 11550 | 0.5 | - |
|
398 |
+
| 0.3625 | 11600 | 0.5 | - |
|
399 |
+
| 0.3641 | 11650 | 0.5 | - |
|
400 |
+
| 0.3656 | 11700 | 0.5 | - |
|
401 |
+
| 0.3672 | 11750 | 0.5 | - |
|
402 |
+
| 0.3688 | 11800 | 0.5 | - |
|
403 |
+
| 0.3703 | 11850 | 0.5 | - |
|
404 |
+
| 0.3719 | 11900 | 0.5 | - |
|
405 |
+
| 0.3734 | 11950 | 0.5 | - |
|
406 |
+
| 0.375 | 12000 | 0.5 | - |
|
407 |
+
| 0.3766 | 12050 | 0.5 | - |
|
408 |
+
| 0.3781 | 12100 | 0.5 | - |
|
409 |
+
| 0.3797 | 12150 | 0.5 | - |
|
410 |
+
| 0.3812 | 12200 | 0.5 | - |
|
411 |
+
| 0.3828 | 12250 | 0.5 | - |
|
412 |
+
| 0.3844 | 12300 | 0.5 | - |
|
413 |
+
| 0.3859 | 12350 | 0.5 | - |
|
414 |
+
| 0.3875 | 12400 | 0.5 | - |
|
415 |
+
| 0.3891 | 12450 | 0.5 | - |
|
416 |
+
| 0.3906 | 12500 | 0.5 | - |
|
417 |
+
| 0.3922 | 12550 | 0.5 | - |
|
418 |
+
| 0.3937 | 12600 | 0.5 | - |
|
419 |
+
| 0.3953 | 12650 | 0.5 | - |
|
420 |
+
| 0.3969 | 12700 | 0.5 | - |
|
421 |
+
| 0.3984 | 12750 | 0.5 | - |
|
422 |
+
| 0.4 | 12800 | 0.5 | - |
|
423 |
+
| 0.4016 | 12850 | 0.5 | - |
|
424 |
+
| 0.4031 | 12900 | 0.5 | - |
|
425 |
+
| 0.4047 | 12950 | 0.5 | - |
|
426 |
+
| 0.4062 | 13000 | 0.5 | - |
|
427 |
+
| 0.4078 | 13050 | 0.5 | - |
|
428 |
+
| 0.4094 | 13100 | 0.5 | - |
|
429 |
+
| 0.4109 | 13150 | 0.5 | - |
|
430 |
+
| 0.4125 | 13200 | 0.5 | - |
|
431 |
+
| 0.4141 | 13250 | 0.5 | - |
|
432 |
+
| 0.4156 | 13300 | 0.5 | - |
|
433 |
+
| 0.4172 | 13350 | 0.5 | - |
|
434 |
+
| 0.4188 | 13400 | 0.5 | - |
|
435 |
+
| 0.4203 | 13450 | 0.5 | - |
|
436 |
+
| 0.4219 | 13500 | 0.5 | - |
|
437 |
+
| 0.4234 | 13550 | 0.5 | - |
|
438 |
+
| 0.425 | 13600 | 0.5 | - |
|
439 |
+
| 0.4266 | 13650 | 0.5 | - |
|
440 |
+
| 0.4281 | 13700 | 0.5 | - |
|
441 |
+
| 0.4297 | 13750 | 0.5 | - |
|
442 |
+
| 0.4313 | 13800 | 0.5 | - |
|
443 |
+
| 0.4328 | 13850 | 0.5 | - |
|
444 |
+
| 0.4344 | 13900 | 0.5 | - |
|
445 |
+
| 0.4359 | 13950 | 0.5 | - |
|
446 |
+
| 0.4375 | 14000 | 0.5 | - |
|
447 |
+
| 0.4391 | 14050 | 0.5 | - |
|
448 |
+
| 0.4406 | 14100 | 0.5 | - |
|
449 |
+
| 0.4422 | 14150 | 0.5 | - |
|
450 |
+
| 0.4437 | 14200 | 0.5 | - |
|
451 |
+
| 0.4453 | 14250 | 0.5 | - |
|
452 |
+
| 0.4469 | 14300 | 0.5 | - |
|
453 |
+
| 0.4484 | 14350 | 0.5 | - |
|
454 |
+
| 0.45 | 14400 | 0.5 | - |
|
455 |
+
| 0.4516 | 14450 | 0.5 | - |
|
456 |
+
| 0.4531 | 14500 | 0.5 | - |
|
457 |
+
| 0.4547 | 14550 | 0.5 | - |
|
458 |
+
| 0.4562 | 14600 | 0.5 | - |
|
459 |
+
| 0.4578 | 14650 | 0.5 | - |
|
460 |
+
| 0.4594 | 14700 | 0.5 | - |
|
461 |
+
| 0.4609 | 14750 | 0.5 | - |
|
462 |
+
| 0.4625 | 14800 | 0.5 | - |
|
463 |
+
| 0.4641 | 14850 | 0.5 | - |
|
464 |
+
| 0.4656 | 14900 | 0.5 | - |
|
465 |
+
| 0.4672 | 14950 | 0.5 | - |
|
466 |
+
| 0.4688 | 15000 | 0.5 | 0.5 |
|
467 |
+
| 0.4703 | 15050 | 0.5 | - |
|
468 |
+
| 0.4719 | 15100 | 0.5 | - |
|
469 |
+
| 0.4734 | 15150 | 0.5 | - |
|
470 |
+
| 0.475 | 15200 | 0.5 | - |
|
471 |
+
| 0.4766 | 15250 | 0.5 | - |
|
472 |
+
| 0.4781 | 15300 | 0.5 | - |
|
473 |
+
| 0.4797 | 15350 | 0.5 | - |
|
474 |
+
| 0.4813 | 15400 | 0.5 | - |
|
475 |
+
| 0.4828 | 15450 | 0.5 | - |
|
476 |
+
| 0.4844 | 15500 | 0.5 | - |
|
477 |
+
| 0.4859 | 15550 | 0.5 | - |
|
478 |
+
| 0.4875 | 15600 | 0.5 | - |
|
479 |
+
| 0.4891 | 15650 | 0.5 | - |
|
480 |
+
| 0.4906 | 15700 | 0.5 | - |
|
481 |
+
| 0.4922 | 15750 | 0.5 | - |
|
482 |
+
| 0.4938 | 15800 | 0.5 | - |
|
483 |
+
| 0.4953 | 15850 | 0.5 | - |
|
484 |
+
| 0.4969 | 15900 | 0.5 | - |
|
485 |
+
| 0.4984 | 15950 | 0.5 | - |
|
486 |
+
| 0.5 | 16000 | 0.5 | - |
|
487 |
+
| 0.5016 | 16050 | 0.5 | - |
|
488 |
+
| 0.5031 | 16100 | 0.5 | - |
|
489 |
+
| 0.5047 | 16150 | 0.5 | - |
|
490 |
+
| 0.5062 | 16200 | 0.5 | - |
|
491 |
+
| 0.5078 | 16250 | 0.5 | - |
|
492 |
+
| 0.5094 | 16300 | 0.5 | - |
|
493 |
+
| 0.5109 | 16350 | 0.5 | - |
|
494 |
+
| 0.5125 | 16400 | 0.5 | - |
|
495 |
+
| 0.5141 | 16450 | 0.5 | - |
|
496 |
+
| 0.5156 | 16500 | 0.5 | - |
|
497 |
+
| 0.5172 | 16550 | 0.5 | - |
|
498 |
+
| 0.5188 | 16600 | 0.5 | - |
|
499 |
+
| 0.5203 | 16650 | 0.5 | - |
|
500 |
+
| 0.5219 | 16700 | 0.5 | - |
|
501 |
+
| 0.5234 | 16750 | 0.5 | - |
|
502 |
+
| 0.525 | 16800 | 0.5 | - |
|
503 |
+
| 0.5266 | 16850 | 0.5 | - |
|
504 |
+
| 0.5281 | 16900 | 0.5 | - |
|
505 |
+
| 0.5297 | 16950 | 0.5 | - |
|
506 |
+
| 0.5312 | 17000 | 0.5 | - |
|
507 |
+
| 0.5328 | 17050 | 0.5 | - |
|
508 |
+
| 0.5344 | 17100 | 0.5 | - |
|
509 |
+
| 0.5359 | 17150 | 0.5 | - |
|
510 |
+
| 0.5375 | 17200 | 0.5 | - |
|
511 |
+
| 0.5391 | 17250 | 0.5 | - |
|
512 |
+
| 0.5406 | 17300 | 0.5 | - |
|
513 |
+
| 0.5422 | 17350 | 0.5 | - |
|
514 |
+
| 0.5437 | 17400 | 0.5 | - |
|
515 |
+
| 0.5453 | 17450 | 0.5 | - |
|
516 |
+
| 0.5469 | 17500 | 0.5 | - |
|
517 |
+
| 0.5484 | 17550 | 0.5 | - |
|
518 |
+
| 0.55 | 17600 | 0.5 | - |
|
519 |
+
| 0.5516 | 17650 | 0.5 | - |
|
520 |
+
| 0.5531 | 17700 | 0.5 | - |
|
521 |
+
| 0.5547 | 17750 | 0.5 | - |
|
522 |
+
| 0.5563 | 17800 | 0.5 | - |
|
523 |
+
| 0.5578 | 17850 | 0.5 | - |
|
524 |
+
| 0.5594 | 17900 | 0.5 | - |
|
525 |
+
| 0.5609 | 17950 | 0.5 | - |
|
526 |
+
| 0.5625 | 18000 | 0.5 | - |
|
527 |
+
| 0.5641 | 18050 | 0.5 | - |
|
528 |
+
| 0.5656 | 18100 | 0.5 | - |
|
529 |
+
| 0.5672 | 18150 | 0.5 | - |
|
530 |
+
| 0.5687 | 18200 | 0.5 | - |
|
531 |
+
| 0.5703 | 18250 | 0.5 | - |
|
532 |
+
| 0.5719 | 18300 | 0.5 | - |
|
533 |
+
| 0.5734 | 18350 | 0.5 | - |
|
534 |
+
| 0.575 | 18400 | 0.5 | - |
|
535 |
+
| 0.5766 | 18450 | 0.5 | - |
|
536 |
+
| 0.5781 | 18500 | 0.5 | - |
|
537 |
+
| 0.5797 | 18550 | 0.5 | - |
|
538 |
+
| 0.5813 | 18600 | 0.5 | - |
|
539 |
+
| 0.5828 | 18650 | 0.5 | - |
|
540 |
+
| 0.5844 | 18700 | 0.5 | - |
|
541 |
+
| 0.5859 | 18750 | 0.5 | - |
|
542 |
+
| 0.5875 | 18800 | 0.5 | - |
|
543 |
+
| 0.5891 | 18850 | 0.5 | - |
|
544 |
+
| 0.5906 | 18900 | 0.5 | - |
|
545 |
+
| 0.5922 | 18950 | 0.5 | - |
|
546 |
+
| 0.5938 | 19000 | 0.5 | - |
|
547 |
+
| 0.5953 | 19050 | 0.5 | - |
|
548 |
+
| 0.5969 | 19100 | 0.5 | - |
|
549 |
+
| 0.5984 | 19150 | 0.5 | - |
|
550 |
+
| 0.6 | 19200 | 0.5 | - |
|
551 |
+
| 0.6016 | 19250 | 0.5 | - |
|
552 |
+
| 0.6031 | 19300 | 0.5 | - |
|
553 |
+
| 0.6047 | 19350 | 0.5 | - |
|
554 |
+
| 0.6062 | 19400 | 0.5 | - |
|
555 |
+
| 0.6078 | 19450 | 0.5 | - |
|
556 |
+
| 0.6094 | 19500 | 0.5 | - |
|
557 |
+
| 0.6109 | 19550 | 0.5 | - |
|
558 |
+
| 0.6125 | 19600 | 0.5 | - |
|
559 |
+
| 0.6141 | 19650 | 0.5 | - |
|
560 |
+
| 0.6156 | 19700 | 0.5 | - |
|
561 |
+
| 0.6172 | 19750 | 0.5 | - |
|
562 |
+
| 0.6188 | 19800 | 0.5 | - |
|
563 |
+
| 0.6203 | 19850 | 0.5 | - |
|
564 |
+
| 0.6219 | 19900 | 0.5 | - |
|
565 |
+
| 0.6234 | 19950 | 0.5 | - |
|
566 |
+
| 0.625 | 20000 | 0.5 | 0.5 |
|
567 |
+
| 0.6266 | 20050 | 0.5 | - |
|
568 |
+
| 0.6281 | 20100 | 0.5 | - |
|
569 |
+
| 0.6297 | 20150 | 0.5 | - |
|
570 |
+
| 0.6312 | 20200 | 0.5 | - |
|
571 |
+
| 0.6328 | 20250 | 0.5 | - |
|
572 |
+
| 0.6344 | 20300 | 0.5 | - |
|
573 |
+
| 0.6359 | 20350 | 0.5 | - |
|
574 |
+
| 0.6375 | 20400 | 0.5 | - |
|
575 |
+
| 0.6391 | 20450 | 0.5 | - |
|
576 |
+
| 0.6406 | 20500 | 0.5 | - |
|
577 |
+
| 0.6422 | 20550 | 0.5 | - |
|
578 |
+
| 0.6438 | 20600 | 0.5 | - |
|
579 |
+
| 0.6453 | 20650 | 0.5 | - |
|
580 |
+
| 0.6469 | 20700 | 0.5 | - |
|
581 |
+
| 0.6484 | 20750 | 0.5 | - |
|
582 |
+
| 0.65 | 20800 | 0.5 | - |
|
583 |
+
| 0.6516 | 20850 | 0.5 | - |
|
584 |
+
| 0.6531 | 20900 | 0.5 | - |
|
585 |
+
| 0.6547 | 20950 | 0.5 | - |
|
586 |
+
| 0.6562 | 21000 | 0.5 | - |
|
587 |
+
| 0.6578 | 21050 | 0.5 | - |
|
588 |
+
| 0.6594 | 21100 | 0.5 | - |
|
589 |
+
| 0.6609 | 21150 | 0.5 | - |
|
590 |
+
| 0.6625 | 21200 | 0.5 | - |
|
591 |
+
| 0.6641 | 21250 | 0.5 | - |
|
592 |
+
| 0.6656 | 21300 | 0.5 | - |
|
593 |
+
| 0.6672 | 21350 | 0.5 | - |
|
594 |
+
| 0.6687 | 21400 | 0.5 | - |
|
595 |
+
| 0.6703 | 21450 | 0.5 | - |
|
596 |
+
| 0.6719 | 21500 | 0.5 | - |
|
597 |
+
| 0.6734 | 21550 | 0.5 | - |
|
598 |
+
| 0.675 | 21600 | 0.5 | - |
|
599 |
+
| 0.6766 | 21650 | 0.5 | - |
|
600 |
+
| 0.6781 | 21700 | 0.5 | - |
|
601 |
+
| 0.6797 | 21750 | 0.5 | - |
|
602 |
+
| 0.6813 | 21800 | 0.5 | - |
|
603 |
+
| 0.6828 | 21850 | 0.5 | - |
|
604 |
+
| 0.6844 | 21900 | 0.5 | - |
|
605 |
+
| 0.6859 | 21950 | 0.5 | - |
|
606 |
+
| 0.6875 | 22000 | 0.5 | - |
|
607 |
+
| 0.6891 | 22050 | 0.5 | - |
|
608 |
+
| 0.6906 | 22100 | 0.5 | - |
|
609 |
+
| 0.6922 | 22150 | 0.5 | - |
|
610 |
+
| 0.6937 | 22200 | 0.5 | - |
|
611 |
+
| 0.6953 | 22250 | 0.5 | - |
|
612 |
+
| 0.6969 | 22300 | 0.5 | - |
|
613 |
+
| 0.6984 | 22350 | 0.5 | - |
|
614 |
+
| 0.7 | 22400 | 0.5 | - |
|
615 |
+
| 0.7016 | 22450 | 0.5 | - |
|
616 |
+
| 0.7031 | 22500 | 0.5 | - |
|
617 |
+
| 0.7047 | 22550 | 0.5 | - |
|
618 |
+
| 0.7063 | 22600 | 0.5 | - |
|
619 |
+
| 0.7078 | 22650 | 0.5 | - |
|
620 |
+
| 0.7094 | 22700 | 0.5 | - |
|
621 |
+
| 0.7109 | 22750 | 0.5 | - |
|
622 |
+
| 0.7125 | 22800 | 0.5 | - |
|
623 |
+
| 0.7141 | 22850 | 0.5 | - |
|
624 |
+
| 0.7156 | 22900 | 0.5 | - |
|
625 |
+
| 0.7172 | 22950 | 0.5 | - |
|
626 |
+
| 0.7188 | 23000 | 0.5 | - |
|
627 |
+
| 0.7203 | 23050 | 0.5 | - |
|
628 |
+
| 0.7219 | 23100 | 0.5 | - |
|
629 |
+
| 0.7234 | 23150 | 0.5 | - |
|
630 |
+
| 0.725 | 23200 | 0.5 | - |
|
631 |
+
| 0.7266 | 23250 | 0.5 | - |
|
632 |
+
| 0.7281 | 23300 | 0.5 | - |
|
633 |
+
| 0.7297 | 23350 | 0.5 | - |
|
634 |
+
| 0.7312 | 23400 | 0.5 | - |
|
635 |
+
| 0.7328 | 23450 | 0.5 | - |
|
636 |
+
| 0.7344 | 23500 | 0.5 | - |
|
637 |
+
| 0.7359 | 23550 | 0.5 | - |
|
638 |
+
| 0.7375 | 23600 | 0.5 | - |
|
639 |
+
| 0.7391 | 23650 | 0.5 | - |
|
640 |
+
| 0.7406 | 23700 | 0.5 | - |
|
641 |
+
| 0.7422 | 23750 | 0.5 | - |
|
642 |
+
| 0.7438 | 23800 | 0.5 | - |
|
643 |
+
| 0.7453 | 23850 | 0.5 | - |
|
644 |
+
| 0.7469 | 23900 | 0.5 | - |
|
645 |
+
| 0.7484 | 23950 | 0.5 | - |
|
646 |
+
| 0.75 | 24000 | 0.5 | - |
|
647 |
+
| 0.7516 | 24050 | 0.5 | - |
|
648 |
+
| 0.7531 | 24100 | 0.5 | - |
|
649 |
+
| 0.7547 | 24150 | 0.5 | - |
|
650 |
+
| 0.7562 | 24200 | 0.5 | - |
|
651 |
+
| 0.7578 | 24250 | 0.5 | - |
|
652 |
+
| 0.7594 | 24300 | 0.5 | - |
|
653 |
+
| 0.7609 | 24350 | 0.5 | - |
|
654 |
+
| 0.7625 | 24400 | 0.5 | - |
|
655 |
+
| 0.7641 | 24450 | 0.5 | - |
|
656 |
+
| 0.7656 | 24500 | 0.5 | - |
|
657 |
+
| 0.7672 | 24550 | 0.5 | - |
|
658 |
+
| 0.7688 | 24600 | 0.5 | - |
|
659 |
+
| 0.7703 | 24650 | 0.5 | - |
|
660 |
+
| 0.7719 | 24700 | 0.5 | - |
|
661 |
+
| 0.7734 | 24750 | 0.5 | - |
|
662 |
+
| 0.775 | 24800 | 0.5 | - |
|
663 |
+
| 0.7766 | 24850 | 0.5 | - |
|
664 |
+
| 0.7781 | 24900 | 0.5 | - |
|
665 |
+
| 0.7797 | 24950 | 0.5 | - |
|
666 |
+
| 0.7812 | 25000 | 0.5 | 0.5 |
|
667 |
+
| 0.7828 | 25050 | 0.5 | - |
|
668 |
+
| 0.7844 | 25100 | 0.5 | - |
|
669 |
+
| 0.7859 | 25150 | 0.5 | - |
|
670 |
+
| 0.7875 | 25200 | 0.5 | - |
|
671 |
+
| 0.7891 | 25250 | 0.5 | - |
|
672 |
+
| 0.7906 | 25300 | 0.5 | - |
|
673 |
+
| 0.7922 | 25350 | 0.5 | - |
|
674 |
+
| 0.7937 | 25400 | 0.5 | - |
|
675 |
+
| 0.7953 | 25450 | 0.5 | - |
|
676 |
+
| 0.7969 | 25500 | 0.5 | - |
|
677 |
+
| 0.7984 | 25550 | 0.5 | - |
|
678 |
+
| 0.8 | 25600 | 0.5 | - |
|
679 |
+
| 0.8016 | 25650 | 0.5 | - |
|
680 |
+
| 0.8031 | 25700 | 0.5 | - |
|
681 |
+
| 0.8047 | 25750 | 0.5 | - |
|
682 |
+
| 0.8063 | 25800 | 0.5 | - |
|
683 |
+
| 0.8078 | 25850 | 0.5 | - |
|
684 |
+
| 0.8094 | 25900 | 0.5 | - |
|
685 |
+
| 0.8109 | 25950 | 0.5 | - |
|
686 |
+
| 0.8125 | 26000 | 0.5 | - |
|
687 |
+
| 0.8141 | 26050 | 0.5 | - |
|
688 |
+
| 0.8156 | 26100 | 0.5 | - |
|
689 |
+
| 0.8172 | 26150 | 0.5 | - |
|
690 |
+
| 0.8187 | 26200 | 0.5 | - |
|
691 |
+
| 0.8203 | 26250 | 0.5 | - |
|
692 |
+
| 0.8219 | 26300 | 0.5 | - |
|
693 |
+
| 0.8234 | 26350 | 0.5 | - |
|
694 |
+
| 0.825 | 26400 | 0.5 | - |
|
695 |
+
| 0.8266 | 26450 | 0.5 | - |
|
696 |
+
| 0.8281 | 26500 | 0.5 | - |
|
697 |
+
| 0.8297 | 26550 | 0.5 | - |
|
698 |
+
| 0.8313 | 26600 | 0.5 | - |
|
699 |
+
| 0.8328 | 26650 | 0.5 | - |
|
700 |
+
| 0.8344 | 26700 | 0.5 | - |
|
701 |
+
| 0.8359 | 26750 | 0.5 | - |
|
702 |
+
| 0.8375 | 26800 | 0.5 | - |
|
703 |
+
| 0.8391 | 26850 | 0.5 | - |
|
704 |
+
| 0.8406 | 26900 | 0.5 | - |
|
705 |
+
| 0.8422 | 26950 | 0.5 | - |
|
706 |
+
| 0.8438 | 27000 | 0.5 | - |
|
707 |
+
| 0.8453 | 27050 | 0.5 | - |
|
708 |
+
| 0.8469 | 27100 | 0.5 | - |
|
709 |
+
| 0.8484 | 27150 | 0.5 | - |
|
710 |
+
| 0.85 | 27200 | 0.5 | - |
|
711 |
+
| 0.8516 | 27250 | 0.5 | - |
|
712 |
+
| 0.8531 | 27300 | 0.5 | - |
|
713 |
+
| 0.8547 | 27350 | 0.5 | - |
|
714 |
+
| 0.8562 | 27400 | 0.5 | - |
|
715 |
+
| 0.8578 | 27450 | 0.5 | - |
|
716 |
+
| 0.8594 | 27500 | 0.5 | - |
|
717 |
+
| 0.8609 | 27550 | 0.5 | - |
|
718 |
+
| 0.8625 | 27600 | 0.5 | - |
|
719 |
+
| 0.8641 | 27650 | 0.5 | - |
|
720 |
+
| 0.8656 | 27700 | 0.5 | - |
|
721 |
+
| 0.8672 | 27750 | 0.5 | - |
|
722 |
+
| 0.8688 | 27800 | 0.5 | - |
|
723 |
+
| 0.8703 | 27850 | 0.5 | - |
|
724 |
+
| 0.8719 | 27900 | 0.5 | - |
|
725 |
+
| 0.8734 | 27950 | 0.5 | - |
|
726 |
+
| 0.875 | 28000 | 0.5 | - |
|
727 |
+
| 0.8766 | 28050 | 0.5 | - |
|
728 |
+
| 0.8781 | 28100 | 0.5 | - |
|
729 |
+
| 0.8797 | 28150 | 0.5 | - |
|
730 |
+
| 0.8812 | 28200 | 0.5 | - |
|
731 |
+
| 0.8828 | 28250 | 0.5 | - |
|
732 |
+
| 0.8844 | 28300 | 0.5 | - |
|
733 |
+
| 0.8859 | 28350 | 0.5 | - |
|
734 |
+
| 0.8875 | 28400 | 0.5 | - |
|
735 |
+
| 0.8891 | 28450 | 0.5 | - |
|
736 |
+
| 0.8906 | 28500 | 0.5 | - |
|
737 |
+
| 0.8922 | 28550 | 0.5 | - |
|
738 |
+
| 0.8938 | 28600 | 0.5 | - |
|
739 |
+
| 0.8953 | 28650 | 0.5 | - |
|
740 |
+
| 0.8969 | 28700 | 0.5 | - |
|
741 |
+
| 0.8984 | 28750 | 0.5 | - |
|
742 |
+
| 0.9 | 28800 | 0.5 | - |
|
743 |
+
| 0.9016 | 28850 | 0.5 | - |
|
744 |
+
| 0.9031 | 28900 | 0.5 | - |
|
745 |
+
| 0.9047 | 28950 | 0.5 | - |
|
746 |
+
| 0.9062 | 29000 | 0.5 | - |
|
747 |
+
| 0.9078 | 29050 | 0.5 | - |
|
748 |
+
| 0.9094 | 29100 | 0.5 | - |
|
749 |
+
| 0.9109 | 29150 | 0.5 | - |
|
750 |
+
| 0.9125 | 29200 | 0.5 | - |
|
751 |
+
| 0.9141 | 29250 | 0.5 | - |
|
752 |
+
| 0.9156 | 29300 | 0.5 | - |
|
753 |
+
| 0.9172 | 29350 | 0.5 | - |
|
754 |
+
| 0.9187 | 29400 | 0.5 | - |
|
755 |
+
| 0.9203 | 29450 | 0.5 | - |
|
756 |
+
| 0.9219 | 29500 | 0.5 | - |
|
757 |
+
| 0.9234 | 29550 | 0.5 | - |
|
758 |
+
| 0.925 | 29600 | 0.5 | - |
|
759 |
+
| 0.9266 | 29650 | 0.5 | - |
|
760 |
+
| 0.9281 | 29700 | 0.5 | - |
|
761 |
+
| 0.9297 | 29750 | 0.5 | - |
|
762 |
+
| 0.9313 | 29800 | 0.5 | - |
|
763 |
+
| 0.9328 | 29850 | 0.5 | - |
|
764 |
+
| 0.9344 | 29900 | 0.5 | - |
|
765 |
+
| 0.9359 | 29950 | 0.5 | - |
|
766 |
+
| 0.9375 | 30000 | 0.5 | 0.5 |
|
767 |
+
| 0.9391 | 30050 | 0.5 | - |
|
768 |
+
| 0.9406 | 30100 | 0.5 | - |
|
769 |
+
| 0.9422 | 30150 | 0.5 | - |
|
770 |
+
| 0.9437 | 30200 | 0.5 | - |
|
771 |
+
| 0.9453 | 30250 | 0.5 | - |
|
772 |
+
| 0.9469 | 30300 | 0.5 | - |
|
773 |
+
| 0.9484 | 30350 | 0.5 | - |
|
774 |
+
| 0.95 | 30400 | 0.5 | - |
|
775 |
+
| 0.9516 | 30450 | 0.5 | - |
|
776 |
+
| 0.9531 | 30500 | 0.5 | - |
|
777 |
+
| 0.9547 | 30550 | 0.5 | - |
|
778 |
+
| 0.9563 | 30600 | 0.5 | - |
|
779 |
+
| 0.9578 | 30650 | 0.5 | - |
|
780 |
+
| 0.9594 | 30700 | 0.5 | - |
|
781 |
+
| 0.9609 | 30750 | 0.5 | - |
|
782 |
+
| 0.9625 | 30800 | 0.5 | - |
|
783 |
+
| 0.9641 | 30850 | 0.5 | - |
|
784 |
+
| 0.9656 | 30900 | 0.5 | - |
|
785 |
+
| 0.9672 | 30950 | 0.5 | - |
|
786 |
+
| 0.9688 | 31000 | 0.5 | - |
|
787 |
+
| 0.9703 | 31050 | 0.5 | - |
|
788 |
+
| 0.9719 | 31100 | 0.5 | - |
|
789 |
+
| 0.9734 | 31150 | 0.5 | - |
|
790 |
+
| 0.975 | 31200 | 0.5 | - |
|
791 |
+
| 0.9766 | 31250 | 0.5 | - |
|
792 |
+
| 0.9781 | 31300 | 0.5 | - |
|
793 |
+
| 0.9797 | 31350 | 0.5 | - |
|
794 |
+
| 0.9812 | 31400 | 0.5 | - |
|
795 |
+
| 0.9828 | 31450 | 0.5 | - |
|
796 |
+
| 0.9844 | 31500 | 0.5 | - |
|
797 |
+
| 0.9859 | 31550 | 0.5 | - |
|
798 |
+
| 0.9875 | 31600 | 0.5 | - |
|
799 |
+
| 0.9891 | 31650 | 0.5 | - |
|
800 |
+
| 0.9906 | 31700 | 0.5 | - |
|
801 |
+
| 0.9922 | 31750 | 0.5 | - |
|
802 |
+
| 0.9938 | 31800 | 0.5 | - |
|
803 |
+
| 0.9953 | 31850 | 0.5 | - |
|
804 |
+
| 0.9969 | 31900 | 0.5 | - |
|
805 |
+
| 0.9984 | 31950 | 0.5 | - |
|
806 |
+
| 1.0 | 32000 | 0.5 | - |
|
807 |
+
|
808 |
+
### Framework Versions
|
809 |
+
- Python: 3.11.0
|
810 |
+
- SetFit: 1.0.3
|
811 |
+
- Sentence Transformers: 2.3.0
|
812 |
+
- Transformers: 4.37.2
|
813 |
+
- PyTorch: 2.2.1+cu121
|
814 |
+
- Datasets: 2.16.1
|
815 |
+
- Tokenizers: 0.15.1
|
816 |
+
|
817 |
+
## Citation
|
818 |
+
|
819 |
+
### BibTeX
|
820 |
+
```bibtex
|
821 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
822 |
+
doi = {10.48550/ARXIV.2209.11055},
|
823 |
+
url = {https://arxiv.org/abs/2209.11055},
|
824 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
825 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
826 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
827 |
+
publisher = {arXiv},
|
828 |
+
year = {2022},
|
829 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
830 |
+
}
|
831 |
+
```
|
832 |
+
|
833 |
+
<!--
|
834 |
+
## Glossary
|
835 |
+
|
836 |
+
*Clearly define terms in order to be accessible across audiences.*
|
837 |
+
-->
|
838 |
+
|
839 |
+
<!--
|
840 |
+
## Model Card Authors
|
841 |
+
|
842 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
843 |
+
-->
|
844 |
+
|
845 |
+
<!--
|
846 |
+
## Model Card Contact
|
847 |
+
|
848 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
849 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": ".\\checkpoints\\step_8000",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.37.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26506633cc616a20c56ccfe2bd1d518b5a94e01f490c3fe9757c957e35b5fd10
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:222d93e24a47ed7aa0ee9c3defaa6e63f62b42eff13d5453b6e04b54f6077d6a
|
3 |
+
size 6991
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "<pad>",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "</s>",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "MPNetTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|