spaly99 commited on
Commit
85f6716
1 Parent(s): 4ebe151

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,849 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ widget:
14
+ - text: Google Maps
15
+ - text: 'IN NEED OF OBEDIENCE CLASSES? '
16
+ - text: ' .modal-content '
17
+ - text: 'U Pere ris, AM sees FULLUW! \SfkE Ka £'' | '
18
+ - text: 'exclusively MAX FACTOR Beeiting new lipstick concept makes all others obsolete! '
19
+ pipeline_tag: text-classification
20
+ inference: true
21
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
22
+ model-index:
23
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.5003125
35
+ name: Accuracy
36
+ - type: precision
37
+ value: 0.0
38
+ name: Precision
39
+ - type: recall
40
+ value: 0.0
41
+ name: Recall
42
+ - type: f1
43
+ value: 0.0
44
+ name: F1
45
+ ---
46
+
47
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
48
+
49
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
50
+
51
+ The model has been trained using an efficient few-shot learning technique that involves:
52
+
53
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
54
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
55
+
56
+ ## Model Details
57
+
58
+ ### Model Description
59
+ - **Model Type:** SetFit
60
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
61
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
62
+ - **Maximum Sequence Length:** 512 tokens
63
+ - **Number of Classes:** 2 classes
64
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
71
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
72
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
73
+
74
+ ### Model Labels
75
+ | Label | Examples |
76
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
77
+ | False | <ul><li>'Persistent'</li><li>'Forensic Contract'</li><li>'View Vendor List'</li></ul> |
78
+ | True | <ul><li>'winming camp at Taj Deccan. Morning and evening batches. Start today. Become a champ. Monday to Friday till 3 Ist march '</li><li>'您的反馈已记录,我们将努力改善您的浏览体验。'</li><li>'Ve ConcerrualL DESIGNER '</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Accuracy | Precision | Recall | F1 |
84
+ |:--------|:---------|:----------|:-------|:----|
85
+ | **all** | 0.5003 | 0.0 | 0.0 | 0.0 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("setfit_model_id")
104
+ # Run inference
105
+ preds = model("Google Maps")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:-------|:----|
137
+ | Word count | 1 | 8.5055 | 706 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:------|:----------------------|
141
+ | False | 6399 |
142
+ | True | 6401 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (16, 2)
146
+ - num_epochs: (1, 16)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 20
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - run_name: PG-OCR-test-1
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:------:|:-----:|:-------------:|:---------------:|
166
+ | 0.0000 | 1 | 0.5 | - |
167
+ | 0.0016 | 50 | 0.5 | - |
168
+ | 0.0031 | 100 | 0.5 | - |
169
+ | 0.0047 | 150 | 0.5 | - |
170
+ | 0.0063 | 200 | 0.5 | - |
171
+ | 0.0078 | 250 | 0.5 | - |
172
+ | 0.0094 | 300 | 0.5 | - |
173
+ | 0.0109 | 350 | 0.5 | - |
174
+ | 0.0125 | 400 | 0.5 | - |
175
+ | 0.0141 | 450 | 0.5 | - |
176
+ | 0.0156 | 500 | 0.5 | - |
177
+ | 0.0172 | 550 | 0.5 | - |
178
+ | 0.0187 | 600 | 0.5 | - |
179
+ | 0.0203 | 650 | 0.5 | - |
180
+ | 0.0219 | 700 | 0.5 | - |
181
+ | 0.0234 | 750 | 0.5 | - |
182
+ | 0.025 | 800 | 0.5 | - |
183
+ | 0.0266 | 850 | 0.5 | - |
184
+ | 0.0281 | 900 | 0.5 | - |
185
+ | 0.0297 | 950 | 0.5 | - |
186
+ | 0.0312 | 1000 | 0.5 | - |
187
+ | 0.0328 | 1050 | 0.5 | - |
188
+ | 0.0344 | 1100 | 0.5 | - |
189
+ | 0.0359 | 1150 | 0.5 | - |
190
+ | 0.0375 | 1200 | 0.5 | - |
191
+ | 0.0391 | 1250 | 0.5 | - |
192
+ | 0.0406 | 1300 | 0.5 | - |
193
+ | 0.0422 | 1350 | 0.5 | - |
194
+ | 0.0437 | 1400 | 0.5 | - |
195
+ | 0.0453 | 1450 | 0.5 | - |
196
+ | 0.0469 | 1500 | 0.5 | - |
197
+ | 0.0484 | 1550 | 0.5 | - |
198
+ | 0.05 | 1600 | 0.5 | - |
199
+ | 0.0516 | 1650 | 0.5 | - |
200
+ | 0.0531 | 1700 | 0.5 | - |
201
+ | 0.0547 | 1750 | 0.5 | - |
202
+ | 0.0563 | 1800 | 0.5 | - |
203
+ | 0.0578 | 1850 | 0.5 | - |
204
+ | 0.0594 | 1900 | 0.5 | - |
205
+ | 0.0609 | 1950 | 0.5 | - |
206
+ | 0.0625 | 2000 | 0.5 | - |
207
+ | 0.0641 | 2050 | 0.5 | - |
208
+ | 0.0656 | 2100 | 0.5 | - |
209
+ | 0.0672 | 2150 | 0.5 | - |
210
+ | 0.0688 | 2200 | 0.5 | - |
211
+ | 0.0703 | 2250 | 0.5 | - |
212
+ | 0.0719 | 2300 | 0.5 | - |
213
+ | 0.0734 | 2350 | 0.5 | - |
214
+ | 0.075 | 2400 | 0.5 | - |
215
+ | 0.0766 | 2450 | 0.5 | - |
216
+ | 0.0781 | 2500 | 0.5 | - |
217
+ | 0.0797 | 2550 | 0.5 | - |
218
+ | 0.0813 | 2600 | 0.5 | - |
219
+ | 0.0828 | 2650 | 0.5 | - |
220
+ | 0.0844 | 2700 | 0.5 | - |
221
+ | 0.0859 | 2750 | 0.5 | - |
222
+ | 0.0875 | 2800 | 0.5 | - |
223
+ | 0.0891 | 2850 | 0.5 | - |
224
+ | 0.0906 | 2900 | 0.5 | - |
225
+ | 0.0922 | 2950 | 0.5 | - |
226
+ | 0.0938 | 3000 | 0.5 | - |
227
+ | 0.0953 | 3050 | 0.5 | - |
228
+ | 0.0969 | 3100 | 0.5 | - |
229
+ | 0.0984 | 3150 | 0.5 | - |
230
+ | 0.1 | 3200 | 0.5 | - |
231
+ | 0.1016 | 3250 | 0.5 | - |
232
+ | 0.1031 | 3300 | 0.5 | - |
233
+ | 0.1047 | 3350 | 0.5 | - |
234
+ | 0.1062 | 3400 | 0.5 | - |
235
+ | 0.1078 | 3450 | 0.5 | - |
236
+ | 0.1094 | 3500 | 0.5 | - |
237
+ | 0.1109 | 3550 | 0.5 | - |
238
+ | 0.1125 | 3600 | 0.5 | - |
239
+ | 0.1141 | 3650 | 0.5 | - |
240
+ | 0.1156 | 3700 | 0.5 | - |
241
+ | 0.1172 | 3750 | 0.5 | - |
242
+ | 0.1187 | 3800 | 0.5 | - |
243
+ | 0.1203 | 3850 | 0.5 | - |
244
+ | 0.1219 | 3900 | 0.5 | - |
245
+ | 0.1234 | 3950 | 0.5 | - |
246
+ | 0.125 | 4000 | 0.5 | - |
247
+ | 0.1266 | 4050 | 0.5 | - |
248
+ | 0.1281 | 4100 | 0.5 | - |
249
+ | 0.1297 | 4150 | 0.5 | - |
250
+ | 0.1313 | 4200 | 0.5 | - |
251
+ | 0.1328 | 4250 | 0.5 | - |
252
+ | 0.1344 | 4300 | 0.5 | - |
253
+ | 0.1359 | 4350 | 0.5 | - |
254
+ | 0.1375 | 4400 | 0.5 | - |
255
+ | 0.1391 | 4450 | 0.5 | - |
256
+ | 0.1406 | 4500 | 0.5 | - |
257
+ | 0.1422 | 4550 | 0.5 | - |
258
+ | 0.1437 | 4600 | 0.5 | - |
259
+ | 0.1453 | 4650 | 0.5 | - |
260
+ | 0.1469 | 4700 | 0.5 | - |
261
+ | 0.1484 | 4750 | 0.5 | - |
262
+ | 0.15 | 4800 | 0.5 | - |
263
+ | 0.1516 | 4850 | 0.5 | - |
264
+ | 0.1531 | 4900 | 0.5 | - |
265
+ | 0.1547 | 4950 | 0.5 | - |
266
+ | 0.1562 | 5000 | 0.5 | 0.5 |
267
+ | 0.1578 | 5050 | 0.5 | - |
268
+ | 0.1594 | 5100 | 0.5 | - |
269
+ | 0.1609 | 5150 | 0.5 | - |
270
+ | 0.1625 | 5200 | 0.5 | - |
271
+ | 0.1641 | 5250 | 0.5 | - |
272
+ | 0.1656 | 5300 | 0.5 | - |
273
+ | 0.1672 | 5350 | 0.5 | - |
274
+ | 0.1688 | 5400 | 0.5 | - |
275
+ | 0.1703 | 5450 | 0.5 | - |
276
+ | 0.1719 | 5500 | 0.5 | - |
277
+ | 0.1734 | 5550 | 0.5 | - |
278
+ | 0.175 | 5600 | 0.5 | - |
279
+ | 0.1766 | 5650 | 0.5 | - |
280
+ | 0.1781 | 5700 | 0.5 | - |
281
+ | 0.1797 | 5750 | 0.5 | - |
282
+ | 0.1812 | 5800 | 0.5 | - |
283
+ | 0.1828 | 5850 | 0.5 | - |
284
+ | 0.1844 | 5900 | 0.5 | - |
285
+ | 0.1859 | 5950 | 0.5 | - |
286
+ | 0.1875 | 6000 | 0.5 | - |
287
+ | 0.1891 | 6050 | 0.5 | - |
288
+ | 0.1906 | 6100 | 0.5 | - |
289
+ | 0.1922 | 6150 | 0.5 | - |
290
+ | 0.1938 | 6200 | 0.5 | - |
291
+ | 0.1953 | 6250 | 0.5 | - |
292
+ | 0.1969 | 6300 | 0.5 | - |
293
+ | 0.1984 | 6350 | 0.5 | - |
294
+ | 0.2 | 6400 | 0.5 | - |
295
+ | 0.2016 | 6450 | 0.5 | - |
296
+ | 0.2031 | 6500 | 0.5 | - |
297
+ | 0.2047 | 6550 | 0.5 | - |
298
+ | 0.2062 | 6600 | 0.5 | - |
299
+ | 0.2078 | 6650 | 0.5 | - |
300
+ | 0.2094 | 6700 | 0.5 | - |
301
+ | 0.2109 | 6750 | 0.5 | - |
302
+ | 0.2125 | 6800 | 0.5 | - |
303
+ | 0.2141 | 6850 | 0.5 | - |
304
+ | 0.2156 | 6900 | 0.5 | - |
305
+ | 0.2172 | 6950 | 0.5 | - |
306
+ | 0.2188 | 7000 | 0.5 | - |
307
+ | 0.2203 | 7050 | 0.5 | - |
308
+ | 0.2219 | 7100 | 0.5 | - |
309
+ | 0.2234 | 7150 | 0.5 | - |
310
+ | 0.225 | 7200 | 0.5 | - |
311
+ | 0.2266 | 7250 | 0.5 | - |
312
+ | 0.2281 | 7300 | 0.5 | - |
313
+ | 0.2297 | 7350 | 0.5 | - |
314
+ | 0.2313 | 7400 | 0.5 | - |
315
+ | 0.2328 | 7450 | 0.5 | - |
316
+ | 0.2344 | 7500 | 0.5 | - |
317
+ | 0.2359 | 7550 | 0.5 | - |
318
+ | 0.2375 | 7600 | 0.5 | - |
319
+ | 0.2391 | 7650 | 0.5 | - |
320
+ | 0.2406 | 7700 | 0.5 | - |
321
+ | 0.2422 | 7750 | 0.5 | - |
322
+ | 0.2437 | 7800 | 0.5 | - |
323
+ | 0.2453 | 7850 | 0.5 | - |
324
+ | 0.2469 | 7900 | 0.5 | - |
325
+ | 0.2484 | 7950 | 0.5 | - |
326
+ | 0.25 | 8000 | 0.5 | - |
327
+ | 0.2516 | 8050 | 0.5 | - |
328
+ | 0.2531 | 8100 | 0.5 | - |
329
+ | 0.2547 | 8150 | 0.5 | - |
330
+ | 0.2562 | 8200 | 0.5 | - |
331
+ | 0.2578 | 8250 | 0.5 | - |
332
+ | 0.2594 | 8300 | 0.5 | - |
333
+ | 0.2609 | 8350 | 0.5 | - |
334
+ | 0.2625 | 8400 | 0.5 | - |
335
+ | 0.2641 | 8450 | 0.5 | - |
336
+ | 0.2656 | 8500 | 0.5 | - |
337
+ | 0.2672 | 8550 | 0.5 | - |
338
+ | 0.2687 | 8600 | 0.5 | - |
339
+ | 0.2703 | 8650 | 0.5 | - |
340
+ | 0.2719 | 8700 | 0.5 | - |
341
+ | 0.2734 | 8750 | 0.5 | - |
342
+ | 0.275 | 8800 | 0.5 | - |
343
+ | 0.2766 | 8850 | 0.5 | - |
344
+ | 0.2781 | 8900 | 0.5 | - |
345
+ | 0.2797 | 8950 | 0.5 | - |
346
+ | 0.2812 | 9000 | 0.5 | - |
347
+ | 0.2828 | 9050 | 0.5 | - |
348
+ | 0.2844 | 9100 | 0.5 | - |
349
+ | 0.2859 | 9150 | 0.5 | - |
350
+ | 0.2875 | 9200 | 0.5 | - |
351
+ | 0.2891 | 9250 | 0.5 | - |
352
+ | 0.2906 | 9300 | 0.5 | - |
353
+ | 0.2922 | 9350 | 0.5 | - |
354
+ | 0.2938 | 9400 | 0.5 | - |
355
+ | 0.2953 | 9450 | 0.5 | - |
356
+ | 0.2969 | 9500 | 0.5 | - |
357
+ | 0.2984 | 9550 | 0.5 | - |
358
+ | 0.3 | 9600 | 0.5 | - |
359
+ | 0.3016 | 9650 | 0.5 | - |
360
+ | 0.3031 | 9700 | 0.5 | - |
361
+ | 0.3047 | 9750 | 0.5 | - |
362
+ | 0.3063 | 9800 | 0.5 | - |
363
+ | 0.3078 | 9850 | 0.5 | - |
364
+ | 0.3094 | 9900 | 0.5 | - |
365
+ | 0.3109 | 9950 | 0.5 | - |
366
+ | 0.3125 | 10000 | 0.5 | 0.5 |
367
+ | 0.3141 | 10050 | 0.5 | - |
368
+ | 0.3156 | 10100 | 0.5 | - |
369
+ | 0.3172 | 10150 | 0.5 | - |
370
+ | 0.3187 | 10200 | 0.5 | - |
371
+ | 0.3203 | 10250 | 0.5 | - |
372
+ | 0.3219 | 10300 | 0.5 | - |
373
+ | 0.3234 | 10350 | 0.5 | - |
374
+ | 0.325 | 10400 | 0.5 | - |
375
+ | 0.3266 | 10450 | 0.5 | - |
376
+ | 0.3281 | 10500 | 0.5 | - |
377
+ | 0.3297 | 10550 | 0.5 | - |
378
+ | 0.3312 | 10600 | 0.5 | - |
379
+ | 0.3328 | 10650 | 0.5 | - |
380
+ | 0.3344 | 10700 | 0.5 | - |
381
+ | 0.3359 | 10750 | 0.5 | - |
382
+ | 0.3375 | 10800 | 0.5 | - |
383
+ | 0.3391 | 10850 | 0.5 | - |
384
+ | 0.3406 | 10900 | 0.5 | - |
385
+ | 0.3422 | 10950 | 0.5 | - |
386
+ | 0.3438 | 11000 | 0.5 | - |
387
+ | 0.3453 | 11050 | 0.5 | - |
388
+ | 0.3469 | 11100 | 0.5 | - |
389
+ | 0.3484 | 11150 | 0.5 | - |
390
+ | 0.35 | 11200 | 0.5 | - |
391
+ | 0.3516 | 11250 | 0.5 | - |
392
+ | 0.3531 | 11300 | 0.5 | - |
393
+ | 0.3547 | 11350 | 0.5 | - |
394
+ | 0.3563 | 11400 | 0.5 | - |
395
+ | 0.3578 | 11450 | 0.5 | - |
396
+ | 0.3594 | 11500 | 0.5 | - |
397
+ | 0.3609 | 11550 | 0.5 | - |
398
+ | 0.3625 | 11600 | 0.5 | - |
399
+ | 0.3641 | 11650 | 0.5 | - |
400
+ | 0.3656 | 11700 | 0.5 | - |
401
+ | 0.3672 | 11750 | 0.5 | - |
402
+ | 0.3688 | 11800 | 0.5 | - |
403
+ | 0.3703 | 11850 | 0.5 | - |
404
+ | 0.3719 | 11900 | 0.5 | - |
405
+ | 0.3734 | 11950 | 0.5 | - |
406
+ | 0.375 | 12000 | 0.5 | - |
407
+ | 0.3766 | 12050 | 0.5 | - |
408
+ | 0.3781 | 12100 | 0.5 | - |
409
+ | 0.3797 | 12150 | 0.5 | - |
410
+ | 0.3812 | 12200 | 0.5 | - |
411
+ | 0.3828 | 12250 | 0.5 | - |
412
+ | 0.3844 | 12300 | 0.5 | - |
413
+ | 0.3859 | 12350 | 0.5 | - |
414
+ | 0.3875 | 12400 | 0.5 | - |
415
+ | 0.3891 | 12450 | 0.5 | - |
416
+ | 0.3906 | 12500 | 0.5 | - |
417
+ | 0.3922 | 12550 | 0.5 | - |
418
+ | 0.3937 | 12600 | 0.5 | - |
419
+ | 0.3953 | 12650 | 0.5 | - |
420
+ | 0.3969 | 12700 | 0.5 | - |
421
+ | 0.3984 | 12750 | 0.5 | - |
422
+ | 0.4 | 12800 | 0.5 | - |
423
+ | 0.4016 | 12850 | 0.5 | - |
424
+ | 0.4031 | 12900 | 0.5 | - |
425
+ | 0.4047 | 12950 | 0.5 | - |
426
+ | 0.4062 | 13000 | 0.5 | - |
427
+ | 0.4078 | 13050 | 0.5 | - |
428
+ | 0.4094 | 13100 | 0.5 | - |
429
+ | 0.4109 | 13150 | 0.5 | - |
430
+ | 0.4125 | 13200 | 0.5 | - |
431
+ | 0.4141 | 13250 | 0.5 | - |
432
+ | 0.4156 | 13300 | 0.5 | - |
433
+ | 0.4172 | 13350 | 0.5 | - |
434
+ | 0.4188 | 13400 | 0.5 | - |
435
+ | 0.4203 | 13450 | 0.5 | - |
436
+ | 0.4219 | 13500 | 0.5 | - |
437
+ | 0.4234 | 13550 | 0.5 | - |
438
+ | 0.425 | 13600 | 0.5 | - |
439
+ | 0.4266 | 13650 | 0.5 | - |
440
+ | 0.4281 | 13700 | 0.5 | - |
441
+ | 0.4297 | 13750 | 0.5 | - |
442
+ | 0.4313 | 13800 | 0.5 | - |
443
+ | 0.4328 | 13850 | 0.5 | - |
444
+ | 0.4344 | 13900 | 0.5 | - |
445
+ | 0.4359 | 13950 | 0.5 | - |
446
+ | 0.4375 | 14000 | 0.5 | - |
447
+ | 0.4391 | 14050 | 0.5 | - |
448
+ | 0.4406 | 14100 | 0.5 | - |
449
+ | 0.4422 | 14150 | 0.5 | - |
450
+ | 0.4437 | 14200 | 0.5 | - |
451
+ | 0.4453 | 14250 | 0.5 | - |
452
+ | 0.4469 | 14300 | 0.5 | - |
453
+ | 0.4484 | 14350 | 0.5 | - |
454
+ | 0.45 | 14400 | 0.5 | - |
455
+ | 0.4516 | 14450 | 0.5 | - |
456
+ | 0.4531 | 14500 | 0.5 | - |
457
+ | 0.4547 | 14550 | 0.5 | - |
458
+ | 0.4562 | 14600 | 0.5 | - |
459
+ | 0.4578 | 14650 | 0.5 | - |
460
+ | 0.4594 | 14700 | 0.5 | - |
461
+ | 0.4609 | 14750 | 0.5 | - |
462
+ | 0.4625 | 14800 | 0.5 | - |
463
+ | 0.4641 | 14850 | 0.5 | - |
464
+ | 0.4656 | 14900 | 0.5 | - |
465
+ | 0.4672 | 14950 | 0.5 | - |
466
+ | 0.4688 | 15000 | 0.5 | 0.5 |
467
+ | 0.4703 | 15050 | 0.5 | - |
468
+ | 0.4719 | 15100 | 0.5 | - |
469
+ | 0.4734 | 15150 | 0.5 | - |
470
+ | 0.475 | 15200 | 0.5 | - |
471
+ | 0.4766 | 15250 | 0.5 | - |
472
+ | 0.4781 | 15300 | 0.5 | - |
473
+ | 0.4797 | 15350 | 0.5 | - |
474
+ | 0.4813 | 15400 | 0.5 | - |
475
+ | 0.4828 | 15450 | 0.5 | - |
476
+ | 0.4844 | 15500 | 0.5 | - |
477
+ | 0.4859 | 15550 | 0.5 | - |
478
+ | 0.4875 | 15600 | 0.5 | - |
479
+ | 0.4891 | 15650 | 0.5 | - |
480
+ | 0.4906 | 15700 | 0.5 | - |
481
+ | 0.4922 | 15750 | 0.5 | - |
482
+ | 0.4938 | 15800 | 0.5 | - |
483
+ | 0.4953 | 15850 | 0.5 | - |
484
+ | 0.4969 | 15900 | 0.5 | - |
485
+ | 0.4984 | 15950 | 0.5 | - |
486
+ | 0.5 | 16000 | 0.5 | - |
487
+ | 0.5016 | 16050 | 0.5 | - |
488
+ | 0.5031 | 16100 | 0.5 | - |
489
+ | 0.5047 | 16150 | 0.5 | - |
490
+ | 0.5062 | 16200 | 0.5 | - |
491
+ | 0.5078 | 16250 | 0.5 | - |
492
+ | 0.5094 | 16300 | 0.5 | - |
493
+ | 0.5109 | 16350 | 0.5 | - |
494
+ | 0.5125 | 16400 | 0.5 | - |
495
+ | 0.5141 | 16450 | 0.5 | - |
496
+ | 0.5156 | 16500 | 0.5 | - |
497
+ | 0.5172 | 16550 | 0.5 | - |
498
+ | 0.5188 | 16600 | 0.5 | - |
499
+ | 0.5203 | 16650 | 0.5 | - |
500
+ | 0.5219 | 16700 | 0.5 | - |
501
+ | 0.5234 | 16750 | 0.5 | - |
502
+ | 0.525 | 16800 | 0.5 | - |
503
+ | 0.5266 | 16850 | 0.5 | - |
504
+ | 0.5281 | 16900 | 0.5 | - |
505
+ | 0.5297 | 16950 | 0.5 | - |
506
+ | 0.5312 | 17000 | 0.5 | - |
507
+ | 0.5328 | 17050 | 0.5 | - |
508
+ | 0.5344 | 17100 | 0.5 | - |
509
+ | 0.5359 | 17150 | 0.5 | - |
510
+ | 0.5375 | 17200 | 0.5 | - |
511
+ | 0.5391 | 17250 | 0.5 | - |
512
+ | 0.5406 | 17300 | 0.5 | - |
513
+ | 0.5422 | 17350 | 0.5 | - |
514
+ | 0.5437 | 17400 | 0.5 | - |
515
+ | 0.5453 | 17450 | 0.5 | - |
516
+ | 0.5469 | 17500 | 0.5 | - |
517
+ | 0.5484 | 17550 | 0.5 | - |
518
+ | 0.55 | 17600 | 0.5 | - |
519
+ | 0.5516 | 17650 | 0.5 | - |
520
+ | 0.5531 | 17700 | 0.5 | - |
521
+ | 0.5547 | 17750 | 0.5 | - |
522
+ | 0.5563 | 17800 | 0.5 | - |
523
+ | 0.5578 | 17850 | 0.5 | - |
524
+ | 0.5594 | 17900 | 0.5 | - |
525
+ | 0.5609 | 17950 | 0.5 | - |
526
+ | 0.5625 | 18000 | 0.5 | - |
527
+ | 0.5641 | 18050 | 0.5 | - |
528
+ | 0.5656 | 18100 | 0.5 | - |
529
+ | 0.5672 | 18150 | 0.5 | - |
530
+ | 0.5687 | 18200 | 0.5 | - |
531
+ | 0.5703 | 18250 | 0.5 | - |
532
+ | 0.5719 | 18300 | 0.5 | - |
533
+ | 0.5734 | 18350 | 0.5 | - |
534
+ | 0.575 | 18400 | 0.5 | - |
535
+ | 0.5766 | 18450 | 0.5 | - |
536
+ | 0.5781 | 18500 | 0.5 | - |
537
+ | 0.5797 | 18550 | 0.5 | - |
538
+ | 0.5813 | 18600 | 0.5 | - |
539
+ | 0.5828 | 18650 | 0.5 | - |
540
+ | 0.5844 | 18700 | 0.5 | - |
541
+ | 0.5859 | 18750 | 0.5 | - |
542
+ | 0.5875 | 18800 | 0.5 | - |
543
+ | 0.5891 | 18850 | 0.5 | - |
544
+ | 0.5906 | 18900 | 0.5 | - |
545
+ | 0.5922 | 18950 | 0.5 | - |
546
+ | 0.5938 | 19000 | 0.5 | - |
547
+ | 0.5953 | 19050 | 0.5 | - |
548
+ | 0.5969 | 19100 | 0.5 | - |
549
+ | 0.5984 | 19150 | 0.5 | - |
550
+ | 0.6 | 19200 | 0.5 | - |
551
+ | 0.6016 | 19250 | 0.5 | - |
552
+ | 0.6031 | 19300 | 0.5 | - |
553
+ | 0.6047 | 19350 | 0.5 | - |
554
+ | 0.6062 | 19400 | 0.5 | - |
555
+ | 0.6078 | 19450 | 0.5 | - |
556
+ | 0.6094 | 19500 | 0.5 | - |
557
+ | 0.6109 | 19550 | 0.5 | - |
558
+ | 0.6125 | 19600 | 0.5 | - |
559
+ | 0.6141 | 19650 | 0.5 | - |
560
+ | 0.6156 | 19700 | 0.5 | - |
561
+ | 0.6172 | 19750 | 0.5 | - |
562
+ | 0.6188 | 19800 | 0.5 | - |
563
+ | 0.6203 | 19850 | 0.5 | - |
564
+ | 0.6219 | 19900 | 0.5 | - |
565
+ | 0.6234 | 19950 | 0.5 | - |
566
+ | 0.625 | 20000 | 0.5 | 0.5 |
567
+ | 0.6266 | 20050 | 0.5 | - |
568
+ | 0.6281 | 20100 | 0.5 | - |
569
+ | 0.6297 | 20150 | 0.5 | - |
570
+ | 0.6312 | 20200 | 0.5 | - |
571
+ | 0.6328 | 20250 | 0.5 | - |
572
+ | 0.6344 | 20300 | 0.5 | - |
573
+ | 0.6359 | 20350 | 0.5 | - |
574
+ | 0.6375 | 20400 | 0.5 | - |
575
+ | 0.6391 | 20450 | 0.5 | - |
576
+ | 0.6406 | 20500 | 0.5 | - |
577
+ | 0.6422 | 20550 | 0.5 | - |
578
+ | 0.6438 | 20600 | 0.5 | - |
579
+ | 0.6453 | 20650 | 0.5 | - |
580
+ | 0.6469 | 20700 | 0.5 | - |
581
+ | 0.6484 | 20750 | 0.5 | - |
582
+ | 0.65 | 20800 | 0.5 | - |
583
+ | 0.6516 | 20850 | 0.5 | - |
584
+ | 0.6531 | 20900 | 0.5 | - |
585
+ | 0.6547 | 20950 | 0.5 | - |
586
+ | 0.6562 | 21000 | 0.5 | - |
587
+ | 0.6578 | 21050 | 0.5 | - |
588
+ | 0.6594 | 21100 | 0.5 | - |
589
+ | 0.6609 | 21150 | 0.5 | - |
590
+ | 0.6625 | 21200 | 0.5 | - |
591
+ | 0.6641 | 21250 | 0.5 | - |
592
+ | 0.6656 | 21300 | 0.5 | - |
593
+ | 0.6672 | 21350 | 0.5 | - |
594
+ | 0.6687 | 21400 | 0.5 | - |
595
+ | 0.6703 | 21450 | 0.5 | - |
596
+ | 0.6719 | 21500 | 0.5 | - |
597
+ | 0.6734 | 21550 | 0.5 | - |
598
+ | 0.675 | 21600 | 0.5 | - |
599
+ | 0.6766 | 21650 | 0.5 | - |
600
+ | 0.6781 | 21700 | 0.5 | - |
601
+ | 0.6797 | 21750 | 0.5 | - |
602
+ | 0.6813 | 21800 | 0.5 | - |
603
+ | 0.6828 | 21850 | 0.5 | - |
604
+ | 0.6844 | 21900 | 0.5 | - |
605
+ | 0.6859 | 21950 | 0.5 | - |
606
+ | 0.6875 | 22000 | 0.5 | - |
607
+ | 0.6891 | 22050 | 0.5 | - |
608
+ | 0.6906 | 22100 | 0.5 | - |
609
+ | 0.6922 | 22150 | 0.5 | - |
610
+ | 0.6937 | 22200 | 0.5 | - |
611
+ | 0.6953 | 22250 | 0.5 | - |
612
+ | 0.6969 | 22300 | 0.5 | - |
613
+ | 0.6984 | 22350 | 0.5 | - |
614
+ | 0.7 | 22400 | 0.5 | - |
615
+ | 0.7016 | 22450 | 0.5 | - |
616
+ | 0.7031 | 22500 | 0.5 | - |
617
+ | 0.7047 | 22550 | 0.5 | - |
618
+ | 0.7063 | 22600 | 0.5 | - |
619
+ | 0.7078 | 22650 | 0.5 | - |
620
+ | 0.7094 | 22700 | 0.5 | - |
621
+ | 0.7109 | 22750 | 0.5 | - |
622
+ | 0.7125 | 22800 | 0.5 | - |
623
+ | 0.7141 | 22850 | 0.5 | - |
624
+ | 0.7156 | 22900 | 0.5 | - |
625
+ | 0.7172 | 22950 | 0.5 | - |
626
+ | 0.7188 | 23000 | 0.5 | - |
627
+ | 0.7203 | 23050 | 0.5 | - |
628
+ | 0.7219 | 23100 | 0.5 | - |
629
+ | 0.7234 | 23150 | 0.5 | - |
630
+ | 0.725 | 23200 | 0.5 | - |
631
+ | 0.7266 | 23250 | 0.5 | - |
632
+ | 0.7281 | 23300 | 0.5 | - |
633
+ | 0.7297 | 23350 | 0.5 | - |
634
+ | 0.7312 | 23400 | 0.5 | - |
635
+ | 0.7328 | 23450 | 0.5 | - |
636
+ | 0.7344 | 23500 | 0.5 | - |
637
+ | 0.7359 | 23550 | 0.5 | - |
638
+ | 0.7375 | 23600 | 0.5 | - |
639
+ | 0.7391 | 23650 | 0.5 | - |
640
+ | 0.7406 | 23700 | 0.5 | - |
641
+ | 0.7422 | 23750 | 0.5 | - |
642
+ | 0.7438 | 23800 | 0.5 | - |
643
+ | 0.7453 | 23850 | 0.5 | - |
644
+ | 0.7469 | 23900 | 0.5 | - |
645
+ | 0.7484 | 23950 | 0.5 | - |
646
+ | 0.75 | 24000 | 0.5 | - |
647
+ | 0.7516 | 24050 | 0.5 | - |
648
+ | 0.7531 | 24100 | 0.5 | - |
649
+ | 0.7547 | 24150 | 0.5 | - |
650
+ | 0.7562 | 24200 | 0.5 | - |
651
+ | 0.7578 | 24250 | 0.5 | - |
652
+ | 0.7594 | 24300 | 0.5 | - |
653
+ | 0.7609 | 24350 | 0.5 | - |
654
+ | 0.7625 | 24400 | 0.5 | - |
655
+ | 0.7641 | 24450 | 0.5 | - |
656
+ | 0.7656 | 24500 | 0.5 | - |
657
+ | 0.7672 | 24550 | 0.5 | - |
658
+ | 0.7688 | 24600 | 0.5 | - |
659
+ | 0.7703 | 24650 | 0.5 | - |
660
+ | 0.7719 | 24700 | 0.5 | - |
661
+ | 0.7734 | 24750 | 0.5 | - |
662
+ | 0.775 | 24800 | 0.5 | - |
663
+ | 0.7766 | 24850 | 0.5 | - |
664
+ | 0.7781 | 24900 | 0.5 | - |
665
+ | 0.7797 | 24950 | 0.5 | - |
666
+ | 0.7812 | 25000 | 0.5 | 0.5 |
667
+ | 0.7828 | 25050 | 0.5 | - |
668
+ | 0.7844 | 25100 | 0.5 | - |
669
+ | 0.7859 | 25150 | 0.5 | - |
670
+ | 0.7875 | 25200 | 0.5 | - |
671
+ | 0.7891 | 25250 | 0.5 | - |
672
+ | 0.7906 | 25300 | 0.5 | - |
673
+ | 0.7922 | 25350 | 0.5 | - |
674
+ | 0.7937 | 25400 | 0.5 | - |
675
+ | 0.7953 | 25450 | 0.5 | - |
676
+ | 0.7969 | 25500 | 0.5 | - |
677
+ | 0.7984 | 25550 | 0.5 | - |
678
+ | 0.8 | 25600 | 0.5 | - |
679
+ | 0.8016 | 25650 | 0.5 | - |
680
+ | 0.8031 | 25700 | 0.5 | - |
681
+ | 0.8047 | 25750 | 0.5 | - |
682
+ | 0.8063 | 25800 | 0.5 | - |
683
+ | 0.8078 | 25850 | 0.5 | - |
684
+ | 0.8094 | 25900 | 0.5 | - |
685
+ | 0.8109 | 25950 | 0.5 | - |
686
+ | 0.8125 | 26000 | 0.5 | - |
687
+ | 0.8141 | 26050 | 0.5 | - |
688
+ | 0.8156 | 26100 | 0.5 | - |
689
+ | 0.8172 | 26150 | 0.5 | - |
690
+ | 0.8187 | 26200 | 0.5 | - |
691
+ | 0.8203 | 26250 | 0.5 | - |
692
+ | 0.8219 | 26300 | 0.5 | - |
693
+ | 0.8234 | 26350 | 0.5 | - |
694
+ | 0.825 | 26400 | 0.5 | - |
695
+ | 0.8266 | 26450 | 0.5 | - |
696
+ | 0.8281 | 26500 | 0.5 | - |
697
+ | 0.8297 | 26550 | 0.5 | - |
698
+ | 0.8313 | 26600 | 0.5 | - |
699
+ | 0.8328 | 26650 | 0.5 | - |
700
+ | 0.8344 | 26700 | 0.5 | - |
701
+ | 0.8359 | 26750 | 0.5 | - |
702
+ | 0.8375 | 26800 | 0.5 | - |
703
+ | 0.8391 | 26850 | 0.5 | - |
704
+ | 0.8406 | 26900 | 0.5 | - |
705
+ | 0.8422 | 26950 | 0.5 | - |
706
+ | 0.8438 | 27000 | 0.5 | - |
707
+ | 0.8453 | 27050 | 0.5 | - |
708
+ | 0.8469 | 27100 | 0.5 | - |
709
+ | 0.8484 | 27150 | 0.5 | - |
710
+ | 0.85 | 27200 | 0.5 | - |
711
+ | 0.8516 | 27250 | 0.5 | - |
712
+ | 0.8531 | 27300 | 0.5 | - |
713
+ | 0.8547 | 27350 | 0.5 | - |
714
+ | 0.8562 | 27400 | 0.5 | - |
715
+ | 0.8578 | 27450 | 0.5 | - |
716
+ | 0.8594 | 27500 | 0.5 | - |
717
+ | 0.8609 | 27550 | 0.5 | - |
718
+ | 0.8625 | 27600 | 0.5 | - |
719
+ | 0.8641 | 27650 | 0.5 | - |
720
+ | 0.8656 | 27700 | 0.5 | - |
721
+ | 0.8672 | 27750 | 0.5 | - |
722
+ | 0.8688 | 27800 | 0.5 | - |
723
+ | 0.8703 | 27850 | 0.5 | - |
724
+ | 0.8719 | 27900 | 0.5 | - |
725
+ | 0.8734 | 27950 | 0.5 | - |
726
+ | 0.875 | 28000 | 0.5 | - |
727
+ | 0.8766 | 28050 | 0.5 | - |
728
+ | 0.8781 | 28100 | 0.5 | - |
729
+ | 0.8797 | 28150 | 0.5 | - |
730
+ | 0.8812 | 28200 | 0.5 | - |
731
+ | 0.8828 | 28250 | 0.5 | - |
732
+ | 0.8844 | 28300 | 0.5 | - |
733
+ | 0.8859 | 28350 | 0.5 | - |
734
+ | 0.8875 | 28400 | 0.5 | - |
735
+ | 0.8891 | 28450 | 0.5 | - |
736
+ | 0.8906 | 28500 | 0.5 | - |
737
+ | 0.8922 | 28550 | 0.5 | - |
738
+ | 0.8938 | 28600 | 0.5 | - |
739
+ | 0.8953 | 28650 | 0.5 | - |
740
+ | 0.8969 | 28700 | 0.5 | - |
741
+ | 0.8984 | 28750 | 0.5 | - |
742
+ | 0.9 | 28800 | 0.5 | - |
743
+ | 0.9016 | 28850 | 0.5 | - |
744
+ | 0.9031 | 28900 | 0.5 | - |
745
+ | 0.9047 | 28950 | 0.5 | - |
746
+ | 0.9062 | 29000 | 0.5 | - |
747
+ | 0.9078 | 29050 | 0.5 | - |
748
+ | 0.9094 | 29100 | 0.5 | - |
749
+ | 0.9109 | 29150 | 0.5 | - |
750
+ | 0.9125 | 29200 | 0.5 | - |
751
+ | 0.9141 | 29250 | 0.5 | - |
752
+ | 0.9156 | 29300 | 0.5 | - |
753
+ | 0.9172 | 29350 | 0.5 | - |
754
+ | 0.9187 | 29400 | 0.5 | - |
755
+ | 0.9203 | 29450 | 0.5 | - |
756
+ | 0.9219 | 29500 | 0.5 | - |
757
+ | 0.9234 | 29550 | 0.5 | - |
758
+ | 0.925 | 29600 | 0.5 | - |
759
+ | 0.9266 | 29650 | 0.5 | - |
760
+ | 0.9281 | 29700 | 0.5 | - |
761
+ | 0.9297 | 29750 | 0.5 | - |
762
+ | 0.9313 | 29800 | 0.5 | - |
763
+ | 0.9328 | 29850 | 0.5 | - |
764
+ | 0.9344 | 29900 | 0.5 | - |
765
+ | 0.9359 | 29950 | 0.5 | - |
766
+ | 0.9375 | 30000 | 0.5 | 0.5 |
767
+ | 0.9391 | 30050 | 0.5 | - |
768
+ | 0.9406 | 30100 | 0.5 | - |
769
+ | 0.9422 | 30150 | 0.5 | - |
770
+ | 0.9437 | 30200 | 0.5 | - |
771
+ | 0.9453 | 30250 | 0.5 | - |
772
+ | 0.9469 | 30300 | 0.5 | - |
773
+ | 0.9484 | 30350 | 0.5 | - |
774
+ | 0.95 | 30400 | 0.5 | - |
775
+ | 0.9516 | 30450 | 0.5 | - |
776
+ | 0.9531 | 30500 | 0.5 | - |
777
+ | 0.9547 | 30550 | 0.5 | - |
778
+ | 0.9563 | 30600 | 0.5 | - |
779
+ | 0.9578 | 30650 | 0.5 | - |
780
+ | 0.9594 | 30700 | 0.5 | - |
781
+ | 0.9609 | 30750 | 0.5 | - |
782
+ | 0.9625 | 30800 | 0.5 | - |
783
+ | 0.9641 | 30850 | 0.5 | - |
784
+ | 0.9656 | 30900 | 0.5 | - |
785
+ | 0.9672 | 30950 | 0.5 | - |
786
+ | 0.9688 | 31000 | 0.5 | - |
787
+ | 0.9703 | 31050 | 0.5 | - |
788
+ | 0.9719 | 31100 | 0.5 | - |
789
+ | 0.9734 | 31150 | 0.5 | - |
790
+ | 0.975 | 31200 | 0.5 | - |
791
+ | 0.9766 | 31250 | 0.5 | - |
792
+ | 0.9781 | 31300 | 0.5 | - |
793
+ | 0.9797 | 31350 | 0.5 | - |
794
+ | 0.9812 | 31400 | 0.5 | - |
795
+ | 0.9828 | 31450 | 0.5 | - |
796
+ | 0.9844 | 31500 | 0.5 | - |
797
+ | 0.9859 | 31550 | 0.5 | - |
798
+ | 0.9875 | 31600 | 0.5 | - |
799
+ | 0.9891 | 31650 | 0.5 | - |
800
+ | 0.9906 | 31700 | 0.5 | - |
801
+ | 0.9922 | 31750 | 0.5 | - |
802
+ | 0.9938 | 31800 | 0.5 | - |
803
+ | 0.9953 | 31850 | 0.5 | - |
804
+ | 0.9969 | 31900 | 0.5 | - |
805
+ | 0.9984 | 31950 | 0.5 | - |
806
+ | 1.0 | 32000 | 0.5 | - |
807
+
808
+ ### Framework Versions
809
+ - Python: 3.11.0
810
+ - SetFit: 1.0.3
811
+ - Sentence Transformers: 2.3.0
812
+ - Transformers: 4.37.2
813
+ - PyTorch: 2.2.1+cu121
814
+ - Datasets: 2.16.1
815
+ - Tokenizers: 0.15.1
816
+
817
+ ## Citation
818
+
819
+ ### BibTeX
820
+ ```bibtex
821
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
822
+ doi = {10.48550/ARXIV.2209.11055},
823
+ url = {https://arxiv.org/abs/2209.11055},
824
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
825
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
826
+ title = {Efficient Few-Shot Learning Without Prompts},
827
+ publisher = {arXiv},
828
+ year = {2022},
829
+ copyright = {Creative Commons Attribution 4.0 International}
830
+ }
831
+ ```
832
+
833
+ <!--
834
+ ## Glossary
835
+
836
+ *Clearly define terms in order to be accessible across audiences.*
837
+ -->
838
+
839
+ <!--
840
+ ## Model Card Authors
841
+
842
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
843
+ -->
844
+
845
+ <!--
846
+ ## Model Card Contact
847
+
848
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
849
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": ".\\checkpoints\\step_8000",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.37.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26506633cc616a20c56ccfe2bd1d518b5a94e01f490c3fe9757c957e35b5fd10
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:222d93e24a47ed7aa0ee9c3defaa6e63f62b42eff13d5453b6e04b54f6077d6a
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff