spaly99 commited on
Commit
c8e4fef
1 Parent(s): d80d26e

Add SetFit model

Browse files
Files changed (3) hide show
  1. README.md +693 -21
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -8,11 +8,11 @@ tags:
8
  metrics:
9
  - accuracy
10
  widget:
11
- - text: 6 months ago
12
- - text: / 0:00
13
- - text: Advertisement
14
- - text: Editing a saved reply
15
- - text: User-Sync
16
  pipeline_tag: text-classification
17
  inference: true
18
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
@@ -28,7 +28,7 @@ model-index:
28
  split: test
29
  metrics:
30
  - type: accuracy
31
- value: 0.5882352941176471
32
  name: Accuracy
33
  ---
34
 
@@ -60,17 +60,17 @@ The model has been trained using an efficient few-shot learning technique that i
60
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
 
62
  ### Model Labels
63
- | Label | Examples |
64
- |:------|:-----------------------------------------------------------------------------------------------------------------------|
65
- | False | <ul><li>'mmmmmmmmmmlli'</li><li>'Middle-Earth: Shadow of...'</li><li>'Intel Core i7-4790 (Desktop) 3.60 GHz'</li></ul> |
66
- | True | <ul><li>'Wall Street Eyes Nikki Haley as Trump Spoiler'</li><li>' Google Tag Manager '</li><li>'/ 0:12'</li></ul> |
67
 
68
  ## Evaluation
69
 
70
  ### Metrics
71
  | Label | Accuracy |
72
  |:--------|:---------|
73
- | **all** | 0.5882 |
74
 
75
  ## Uses
76
 
@@ -90,7 +90,7 @@ from setfit import SetFitModel
90
  # Download from the 🤗 Hub
91
  model = SetFitModel.from_pretrained("setfit_model_id")
92
  # Run inference
93
- preds = model("/ 0:00")
94
  ```
95
 
96
  <!--
@@ -122,12 +122,12 @@ preds = model("/ 0:00")
122
  ### Training Set Metrics
123
  | Training set | Min | Median | Max |
124
  |:-------------|:----|:-------|:----|
125
- | Word count | 1 | 5.2985 | 59 |
126
 
127
  | Label | Training Sample Count |
128
  |:------|:----------------------|
129
- | False | 31 |
130
- | True | 36 |
131
 
132
  ### Training Hyperparameters
133
  - batch_size: (16, 16)
@@ -148,12 +148,684 @@ preds = model("/ 0:00")
148
  - load_best_model_at_end: False
149
 
150
  ### Training Results
151
- | Epoch | Step | Training Loss | Validation Loss |
152
- |:------:|:----:|:-------------:|:---------------:|
153
- | 0.0060 | 1 | 0.4128 | - |
154
- | 0.2976 | 50 | 0.1656 | - |
155
- | 0.5952 | 100 | 0.0051 | - |
156
- | 0.8929 | 150 | 0.003 | - |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
  ### Framework Versions
159
  - Python: 3.11.0
 
8
  metrics:
9
  - accuracy
10
  widget:
11
+ - text: Intel Pentium 3556U (Mobile) 1.70 GHz
12
+ - text: Sign in
13
+ - text: Discover the mountains
14
+ - text: "\n Other services\n "
15
+ - text: Iceland
16
  pipeline_tag: text-classification
17
  inference: true
18
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
 
28
  split: test
29
  metrics:
30
  - type: accuracy
31
+ value: 0.9034931912374186
32
  name: Accuracy
33
  ---
34
 
 
60
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
 
62
  ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------|
65
+ | True | <ul><li>'Pug (1×1)'</li><li>'Pug (1×1)'</li><li>'/ 0:31'</li></ul> |
66
+ | False | <ul><li>'Forum FAQ'</li><li>'Hearthstone'</li><li>'NVIDIA GeForce GTX 670MX (Mobile) 3072 MB'</li></ul> |
67
 
68
  ## Evaluation
69
 
70
  ### Metrics
71
  | Label | Accuracy |
72
  |:--------|:---------|
73
+ | **all** | 0.9035 |
74
 
75
  ## Uses
76
 
 
90
  # Download from the 🤗 Hub
91
  model = SetFitModel.from_pretrained("setfit_model_id")
92
  # Run inference
93
+ preds = model("Sign in")
94
  ```
95
 
96
  <!--
 
122
  ### Training Set Metrics
123
  | Training set | Min | Median | Max |
124
  |:-------------|:----|:-------|:----|
125
+ | Word count | 1 | 5.4853 | 301 |
126
 
127
  | Label | Training Sample Count |
128
  |:------|:----------------------|
129
+ | False | 6755 |
130
+ | True | 6757 |
131
 
132
  ### Training Hyperparameters
133
  - batch_size: (16, 16)
 
148
  - load_best_model_at_end: False
149
 
150
  ### Training Results
151
+ | Epoch | Step | Training Loss | Validation Loss |
152
+ |:------:|:-----:|:-------------:|:---------------:|
153
+ | 0.0000 | 1 | 0.3555 | - |
154
+ | 0.0015 | 50 | 0.3874 | - |
155
+ | 0.0030 | 100 | 0.3422 | - |
156
+ | 0.0044 | 150 | 0.3148 | - |
157
+ | 0.0059 | 200 | 0.2496 | - |
158
+ | 0.0074 | 250 | 0.2681 | - |
159
+ | 0.0089 | 300 | 0.2412 | - |
160
+ | 0.0104 | 350 | 0.2927 | - |
161
+ | 0.0118 | 400 | 0.2389 | - |
162
+ | 0.0133 | 450 | 0.2559 | - |
163
+ | 0.0148 | 500 | 0.204 | - |
164
+ | 0.0163 | 550 | 0.158 | - |
165
+ | 0.0178 | 600 | 0.1479 | - |
166
+ | 0.0192 | 650 | 0.1958 | - |
167
+ | 0.0207 | 700 | 0.2173 | - |
168
+ | 0.0222 | 750 | 0.1231 | - |
169
+ | 0.0237 | 800 | 0.1966 | - |
170
+ | 0.0252 | 850 | 0.1599 | - |
171
+ | 0.0266 | 900 | 0.1373 | - |
172
+ | 0.0281 | 950 | 0.2491 | - |
173
+ | 0.0296 | 1000 | 0.0951 | - |
174
+ | 0.0311 | 1050 | 0.2253 | - |
175
+ | 0.0326 | 1100 | 0.2046 | - |
176
+ | 0.0340 | 1150 | 0.2174 | - |
177
+ | 0.0355 | 1200 | 0.1401 | - |
178
+ | 0.0370 | 1250 | 0.1549 | - |
179
+ | 0.0385 | 1300 | 0.1872 | - |
180
+ | 0.0400 | 1350 | 0.2262 | - |
181
+ | 0.0414 | 1400 | 0.1277 | - |
182
+ | 0.0429 | 1450 | 0.1653 | - |
183
+ | 0.0444 | 1500 | 0.1355 | - |
184
+ | 0.0459 | 1550 | 0.1235 | - |
185
+ | 0.0474 | 1600 | 0.0947 | - |
186
+ | 0.0488 | 1650 | 0.11 | - |
187
+ | 0.0503 | 1700 | 0.1149 | - |
188
+ | 0.0518 | 1750 | 0.1823 | - |
189
+ | 0.0533 | 1800 | 0.2104 | - |
190
+ | 0.0548 | 1850 | 0.0871 | - |
191
+ | 0.0562 | 1900 | 0.1275 | - |
192
+ | 0.0577 | 1950 | 0.0977 | - |
193
+ | 0.0592 | 2000 | 0.2031 | - |
194
+ | 0.0607 | 2050 | 0.1872 | - |
195
+ | 0.0622 | 2100 | 0.0996 | - |
196
+ | 0.0636 | 2150 | 0.1487 | - |
197
+ | 0.0651 | 2200 | 0.1647 | - |
198
+ | 0.0666 | 2250 | 0.0861 | - |
199
+ | 0.0681 | 2300 | 0.0464 | - |
200
+ | 0.0696 | 2350 | 0.1026 | - |
201
+ | 0.0710 | 2400 | 0.2031 | - |
202
+ | 0.0725 | 2450 | 0.1815 | - |
203
+ | 0.0740 | 2500 | 0.0644 | - |
204
+ | 0.0755 | 2550 | 0.1039 | - |
205
+ | 0.0770 | 2600 | 0.0115 | - |
206
+ | 0.0784 | 2650 | 0.0426 | - |
207
+ | 0.0799 | 2700 | 0.0895 | - |
208
+ | 0.0814 | 2750 | 0.1562 | - |
209
+ | 0.0829 | 2800 | 0.0835 | - |
210
+ | 0.0844 | 2850 | 0.1681 | - |
211
+ | 0.0858 | 2900 | 0.1159 | - |
212
+ | 0.0873 | 2950 | 0.0162 | - |
213
+ | 0.0888 | 3000 | 0.0634 | - |
214
+ | 0.0903 | 3050 | 0.1161 | - |
215
+ | 0.0918 | 3100 | 0.1086 | - |
216
+ | 0.0933 | 3150 | 0.0548 | - |
217
+ | 0.0947 | 3200 | 0.1209 | - |
218
+ | 0.0962 | 3250 | 0.0425 | - |
219
+ | 0.0977 | 3300 | 0.0157 | - |
220
+ | 0.0992 | 3350 | 0.1293 | - |
221
+ | 0.1007 | 3400 | 0.1847 | - |
222
+ | 0.1021 | 3450 | 0.1965 | - |
223
+ | 0.1036 | 3500 | 0.1286 | - |
224
+ | 0.1051 | 3550 | 0.104 | - |
225
+ | 0.1066 | 3600 | 0.0899 | - |
226
+ | 0.1081 | 3650 | 0.1513 | - |
227
+ | 0.1095 | 3700 | 0.0443 | - |
228
+ | 0.1110 | 3750 | 0.053 | - |
229
+ | 0.1125 | 3800 | 0.0096 | - |
230
+ | 0.1140 | 3850 | 0.0399 | - |
231
+ | 0.1155 | 3900 | 0.068 | - |
232
+ | 0.1169 | 3950 | 0.0537 | - |
233
+ | 0.1184 | 4000 | 0.0235 | - |
234
+ | 0.1199 | 4050 | 0.0625 | - |
235
+ | 0.1214 | 4100 | 0.1303 | - |
236
+ | 0.1229 | 4150 | 0.1208 | - |
237
+ | 0.1243 | 4200 | 0.0041 | - |
238
+ | 0.1258 | 4250 | 0.059 | - |
239
+ | 0.1273 | 4300 | 0.0543 | - |
240
+ | 0.1288 | 4350 | 0.1664 | - |
241
+ | 0.1303 | 4400 | 0.0591 | - |
242
+ | 0.1317 | 4450 | 0.0631 | - |
243
+ | 0.1332 | 4500 | 0.2538 | - |
244
+ | 0.1347 | 4550 | 0.0484 | - |
245
+ | 0.1362 | 4600 | 0.003 | - |
246
+ | 0.1377 | 4650 | 0.0849 | - |
247
+ | 0.1391 | 4700 | 0.1109 | - |
248
+ | 0.1406 | 4750 | 0.0403 | - |
249
+ | 0.1421 | 4800 | 0.0481 | - |
250
+ | 0.1436 | 4850 | 0.0172 | - |
251
+ | 0.1451 | 4900 | 0.0049 | - |
252
+ | 0.1465 | 4950 | 0.006 | - |
253
+ | 0.1480 | 5000 | 0.0009 | - |
254
+ | 0.1495 | 5050 | 0.0712 | - |
255
+ | 0.1510 | 5100 | 0.1076 | - |
256
+ | 0.1525 | 5150 | 0.1123 | - |
257
+ | 0.1539 | 5200 | 0.0029 | - |
258
+ | 0.1554 | 5250 | 0.0519 | - |
259
+ | 0.1569 | 5300 | 0.0523 | - |
260
+ | 0.1584 | 5350 | 0.097 | - |
261
+ | 0.1599 | 5400 | 0.0471 | - |
262
+ | 0.1613 | 5450 | 0.0371 | - |
263
+ | 0.1628 | 5500 | 0.1127 | - |
264
+ | 0.1643 | 5550 | 0.0535 | - |
265
+ | 0.1658 | 5600 | 0.0067 | - |
266
+ | 0.1673 | 5650 | 0.01 | - |
267
+ | 0.1687 | 5700 | 0.0085 | - |
268
+ | 0.1702 | 5750 | 0.0739 | - |
269
+ | 0.1717 | 5800 | 0.0019 | - |
270
+ | 0.1732 | 5850 | 0.0045 | - |
271
+ | 0.1747 | 5900 | 0.1316 | - |
272
+ | 0.1761 | 5950 | 0.0623 | - |
273
+ | 0.1776 | 6000 | 0.088 | - |
274
+ | 0.1791 | 6050 | 0.0498 | - |
275
+ | 0.1806 | 6100 | 0.0028 | - |
276
+ | 0.1821 | 6150 | 0.1206 | - |
277
+ | 0.1835 | 6200 | 0.0041 | - |
278
+ | 0.1850 | 6250 | 0.0849 | - |
279
+ | 0.1865 | 6300 | 0.247 | - |
280
+ | 0.1880 | 6350 | 0.0042 | - |
281
+ | 0.1895 | 6400 | 0.0944 | - |
282
+ | 0.1909 | 6450 | 0.1046 | - |
283
+ | 0.1924 | 6500 | 0.0481 | - |
284
+ | 0.1939 | 6550 | 0.0034 | - |
285
+ | 0.1954 | 6600 | 0.0066 | - |
286
+ | 0.1969 | 6650 | 0.0015 | - |
287
+ | 0.1983 | 6700 | 0.0816 | - |
288
+ | 0.1998 | 6750 | 0.0511 | - |
289
+ | 0.2013 | 6800 | 0.0739 | - |
290
+ | 0.2028 | 6850 | 0.0024 | - |
291
+ | 0.2043 | 6900 | 0.0221 | - |
292
+ | 0.2057 | 6950 | 0.0678 | - |
293
+ | 0.2072 | 7000 | 0.0838 | - |
294
+ | 0.2087 | 7050 | 0.0023 | - |
295
+ | 0.2102 | 7100 | 0.0043 | - |
296
+ | 0.2117 | 7150 | 0.0551 | - |
297
+ | 0.2131 | 7200 | 0.0167 | - |
298
+ | 0.2146 | 7250 | 0.0033 | - |
299
+ | 0.2161 | 7300 | 0.008 | - |
300
+ | 0.2176 | 7350 | 0.0259 | - |
301
+ | 0.2191 | 7400 | 0.0078 | - |
302
+ | 0.2205 | 7450 | 0.0113 | - |
303
+ | 0.2220 | 7500 | 0.0153 | - |
304
+ | 0.2235 | 7550 | 0.059 | - |
305
+ | 0.2250 | 7600 | 0.0401 | - |
306
+ | 0.2265 | 7650 | 0.0015 | - |
307
+ | 0.2279 | 7700 | 0.0102 | - |
308
+ | 0.2294 | 7750 | 0.0489 | - |
309
+ | 0.2309 | 7800 | 0.1319 | - |
310
+ | 0.2324 | 7850 | 0.0128 | - |
311
+ | 0.2339 | 7900 | 0.0234 | - |
312
+ | 0.2353 | 7950 | 0.0105 | - |
313
+ | 0.2368 | 8000 | 0.0008 | - |
314
+ | 0.2383 | 8050 | 0.1118 | - |
315
+ | 0.2398 | 8100 | 0.0076 | - |
316
+ | 0.2413 | 8150 | 0.1399 | - |
317
+ | 0.2427 | 8200 | 0.0042 | - |
318
+ | 0.2442 | 8250 | 0.0579 | - |
319
+ | 0.2457 | 8300 | 0.0533 | - |
320
+ | 0.2472 | 8350 | 0.0271 | - |
321
+ | 0.2487 | 8400 | 0.0461 | - |
322
+ | 0.2501 | 8450 | 0.0052 | - |
323
+ | 0.2516 | 8500 | 0.0661 | - |
324
+ | 0.2531 | 8550 | 0.0407 | - |
325
+ | 0.2546 | 8600 | 0.0208 | - |
326
+ | 0.2561 | 8650 | 0.0527 | - |
327
+ | 0.2575 | 8700 | 0.0065 | - |
328
+ | 0.2590 | 8750 | 0.0051 | - |
329
+ | 0.2605 | 8800 | 0.0179 | - |
330
+ | 0.2620 | 8850 | 0.0332 | - |
331
+ | 0.2635 | 8900 | 0.0625 | - |
332
+ | 0.2649 | 8950 | 0.1035 | - |
333
+ | 0.2664 | 9000 | 0.129 | - |
334
+ | 0.2679 | 9050 | 0.0988 | - |
335
+ | 0.2694 | 9100 | 0.0035 | - |
336
+ | 0.2709 | 9150 | 0.0045 | - |
337
+ | 0.2724 | 9200 | 0.0277 | - |
338
+ | 0.2738 | 9250 | 0.0291 | - |
339
+ | 0.2753 | 9300 | 0.0307 | - |
340
+ | 0.2768 | 9350 | 0.0844 | - |
341
+ | 0.2783 | 9400 | 0.0036 | - |
342
+ | 0.2798 | 9450 | 0.0807 | - |
343
+ | 0.2812 | 9500 | 0.0619 | - |
344
+ | 0.2827 | 9550 | 0.0675 | - |
345
+ | 0.2842 | 9600 | 0.0008 | - |
346
+ | 0.2857 | 9650 | 0.0134 | - |
347
+ | 0.2872 | 9700 | 0.0027 | - |
348
+ | 0.2886 | 9750 | 0.0009 | - |
349
+ | 0.2901 | 9800 | 0.0119 | - |
350
+ | 0.2916 | 9850 | 0.0165 | - |
351
+ | 0.2931 | 9900 | 0.0242 | - |
352
+ | 0.2946 | 9950 | 0.1022 | - |
353
+ | 0.2960 | 10000 | 0.0288 | - |
354
+ | 0.2975 | 10050 | 0.0016 | - |
355
+ | 0.2990 | 10100 | 0.0027 | - |
356
+ | 0.3005 | 10150 | 0.0237 | - |
357
+ | 0.3020 | 10200 | 0.0014 | - |
358
+ | 0.3034 | 10250 | 0.0129 | - |
359
+ | 0.3049 | 10300 | 0.0023 | - |
360
+ | 0.3064 | 10350 | 0.0038 | - |
361
+ | 0.3079 | 10400 | 0.0005 | - |
362
+ | 0.3094 | 10450 | 0.0448 | - |
363
+ | 0.3108 | 10500 | 0.0334 | - |
364
+ | 0.3123 | 10550 | 0.1215 | - |
365
+ | 0.3138 | 10600 | 0.0021 | - |
366
+ | 0.3153 | 10650 | 0.0433 | - |
367
+ | 0.3168 | 10700 | 0.0106 | - |
368
+ | 0.3182 | 10750 | 0.0574 | - |
369
+ | 0.3197 | 10800 | 0.0421 | - |
370
+ | 0.3212 | 10850 | 0.0676 | - |
371
+ | 0.3227 | 10900 | 0.0358 | - |
372
+ | 0.3242 | 10950 | 0.1207 | - |
373
+ | 0.3256 | 11000 | 0.0154 | - |
374
+ | 0.3271 | 11050 | 0.0078 | - |
375
+ | 0.3286 | 11100 | 0.0475 | - |
376
+ | 0.3301 | 11150 | 0.0697 | - |
377
+ | 0.3316 | 11200 | 0.0016 | - |
378
+ | 0.3330 | 11250 | 0.012 | - |
379
+ | 0.3345 | 11300 | 0.0252 | - |
380
+ | 0.3360 | 11350 | 0.003 | - |
381
+ | 0.3375 | 11400 | 0.0323 | - |
382
+ | 0.3390 | 11450 | 0.0782 | - |
383
+ | 0.3404 | 11500 | 0.0661 | - |
384
+ | 0.3419 | 11550 | 0.0473 | - |
385
+ | 0.3434 | 11600 | 0.1388 | - |
386
+ | 0.3449 | 11650 | 0.0092 | - |
387
+ | 0.3464 | 11700 | 0.0055 | - |
388
+ | 0.3478 | 11750 | 0.0636 | - |
389
+ | 0.3493 | 11800 | 0.0301 | - |
390
+ | 0.3508 | 11850 | 0.02 | - |
391
+ | 0.3523 | 11900 | 0.091 | - |
392
+ | 0.3538 | 11950 | 0.0645 | - |
393
+ | 0.3552 | 12000 | 0.0131 | - |
394
+ | 0.3567 | 12050 | 0.0302 | - |
395
+ | 0.3582 | 12100 | 0.0434 | - |
396
+ | 0.3597 | 12150 | 0.0007 | - |
397
+ | 0.3612 | 12200 | 0.0195 | - |
398
+ | 0.3626 | 12250 | 0.0779 | - |
399
+ | 0.3641 | 12300 | 0.0794 | - |
400
+ | 0.3656 | 12350 | 0.0586 | - |
401
+ | 0.3671 | 12400 | 0.0966 | - |
402
+ | 0.3686 | 12450 | 0.0289 | - |
403
+ | 0.3700 | 12500 | 0.0014 | - |
404
+ | 0.3715 | 12550 | 0.0008 | - |
405
+ | 0.3730 | 12600 | 0.0174 | - |
406
+ | 0.3745 | 12650 | 0.0151 | - |
407
+ | 0.3760 | 12700 | 0.0223 | - |
408
+ | 0.3774 | 12750 | 0.0034 | - |
409
+ | 0.3789 | 12800 | 0.0621 | - |
410
+ | 0.3804 | 12850 | 0.0585 | - |
411
+ | 0.3819 | 12900 | 0.1385 | - |
412
+ | 0.3834 | 12950 | 0.1086 | - |
413
+ | 0.3848 | 13000 | 0.0005 | - |
414
+ | 0.3863 | 13050 | 0.0178 | - |
415
+ | 0.3878 | 13100 | 0.1447 | - |
416
+ | 0.3893 | 13150 | 0.1267 | - |
417
+ | 0.3908 | 13200 | 0.0823 | - |
418
+ | 0.3922 | 13250 | 0.0223 | - |
419
+ | 0.3937 | 13300 | 0.0029 | - |
420
+ | 0.3952 | 13350 | 0.0273 | - |
421
+ | 0.3967 | 13400 | 0.0807 | - |
422
+ | 0.3982 | 13450 | 0.0042 | - |
423
+ | 0.3996 | 13500 | 0.0023 | - |
424
+ | 0.4011 | 13550 | 0.0528 | - |
425
+ | 0.4026 | 13600 | 0.0013 | - |
426
+ | 0.4041 | 13650 | 0.0413 | - |
427
+ | 0.4056 | 13700 | 0.1404 | - |
428
+ | 0.4070 | 13750 | 0.1508 | - |
429
+ | 0.4085 | 13800 | 0.0214 | - |
430
+ | 0.4100 | 13850 | 0.0737 | - |
431
+ | 0.4115 | 13900 | 0.0962 | - |
432
+ | 0.4130 | 13950 | 0.0536 | - |
433
+ | 0.4144 | 14000 | 0.0075 | - |
434
+ | 0.4159 | 14050 | 0.0401 | - |
435
+ | 0.4174 | 14100 | 0.0268 | - |
436
+ | 0.4189 | 14150 | 0.0104 | - |
437
+ | 0.4204 | 14200 | 0.0066 | - |
438
+ | 0.4218 | 14250 | 0.006 | - |
439
+ | 0.4233 | 14300 | 0.0053 | - |
440
+ | 0.4248 | 14350 | 0.0367 | - |
441
+ | 0.4263 | 14400 | 0.0041 | - |
442
+ | 0.4278 | 14450 | 0.0245 | - |
443
+ | 0.4292 | 14500 | 0.0351 | - |
444
+ | 0.4307 | 14550 | 0.0794 | - |
445
+ | 0.4322 | 14600 | 0.0771 | - |
446
+ | 0.4337 | 14650 | 0.0172 | - |
447
+ | 0.4352 | 14700 | 0.0137 | - |
448
+ | 0.4366 | 14750 | 0.044 | - |
449
+ | 0.4381 | 14800 | 0.0042 | - |
450
+ | 0.4396 | 14850 | 0.0554 | - |
451
+ | 0.4411 | 14900 | 0.0794 | - |
452
+ | 0.4426 | 14950 | 0.0404 | - |
453
+ | 0.4440 | 15000 | 0.0461 | - |
454
+ | 0.4455 | 15050 | 0.0176 | - |
455
+ | 0.4470 | 15100 | 0.0973 | - |
456
+ | 0.4485 | 15150 | 0.0034 | - |
457
+ | 0.4500 | 15200 | 0.0056 | - |
458
+ | 0.4515 | 15250 | 0.039 | - |
459
+ | 0.4529 | 15300 | 0.0136 | - |
460
+ | 0.4544 | 15350 | 0.0292 | - |
461
+ | 0.4559 | 15400 | 0.0023 | - |
462
+ | 0.4574 | 15450 | 0.0709 | - |
463
+ | 0.4589 | 15500 | 0.1226 | - |
464
+ | 0.4603 | 15550 | 0.0847 | - |
465
+ | 0.4618 | 15600 | 0.1088 | - |
466
+ | 0.4633 | 15650 | 0.0605 | - |
467
+ | 0.4648 | 15700 | 0.0151 | - |
468
+ | 0.4663 | 15750 | 0.0475 | - |
469
+ | 0.4677 | 15800 | 0.0173 | - |
470
+ | 0.4692 | 15850 | 0.0085 | - |
471
+ | 0.4707 | 15900 | 0.0491 | - |
472
+ | 0.4722 | 15950 | 0.0349 | - |
473
+ | 0.4737 | 16000 | 0.0571 | - |
474
+ | 0.4751 | 16050 | 0.0867 | - |
475
+ | 0.4766 | 16100 | 0.0138 | - |
476
+ | 0.4781 | 16150 | 0.015 | - |
477
+ | 0.4796 | 16200 | 0.0556 | - |
478
+ | 0.4811 | 16250 | 0.0149 | - |
479
+ | 0.4825 | 16300 | 0.0598 | - |
480
+ | 0.4840 | 16350 | 0.0032 | - |
481
+ | 0.4855 | 16400 | 0.0006 | - |
482
+ | 0.4870 | 16450 | 0.0479 | - |
483
+ | 0.4885 | 16500 | 0.0491 | - |
484
+ | 0.4899 | 16550 | 0.1069 | - |
485
+ | 0.4914 | 16600 | 0.0164 | - |
486
+ | 0.4929 | 16650 | 0.013 | - |
487
+ | 0.4944 | 16700 | 0.0123 | - |
488
+ | 0.4959 | 16750 | 0.0151 | - |
489
+ | 0.4973 | 16800 | 0.0014 | - |
490
+ | 0.4988 | 16850 | 0.0028 | - |
491
+ | 0.5003 | 16900 | 0.0108 | - |
492
+ | 0.5018 | 16950 | 0.0023 | - |
493
+ | 0.5033 | 17000 | 0.0495 | - |
494
+ | 0.5047 | 17050 | 0.0171 | - |
495
+ | 0.5062 | 17100 | 0.0014 | - |
496
+ | 0.5077 | 17150 | 0.1108 | - |
497
+ | 0.5092 | 17200 | 0.0309 | - |
498
+ | 0.5107 | 17250 | 0.0085 | - |
499
+ | 0.5121 | 17300 | 0.1128 | - |
500
+ | 0.5136 | 17350 | 0.0548 | - |
501
+ | 0.5151 | 17400 | 0.034 | - |
502
+ | 0.5166 | 17450 | 0.0788 | - |
503
+ | 0.5181 | 17500 | 0.072 | - |
504
+ | 0.5195 | 17550 | 0.0498 | - |
505
+ | 0.5210 | 17600 | 0.0109 | - |
506
+ | 0.5225 | 17650 | 0.0738 | - |
507
+ | 0.5240 | 17700 | 0.021 | - |
508
+ | 0.5255 | 17750 | 0.0364 | - |
509
+ | 0.5269 | 17800 | 0.0611 | - |
510
+ | 0.5284 | 17850 | 0.0138 | - |
511
+ | 0.5299 | 17900 | 0.0109 | - |
512
+ | 0.5314 | 17950 | 0.0572 | - |
513
+ | 0.5329 | 18000 | 0.0095 | - |
514
+ | 0.5343 | 18050 | 0.0501 | - |
515
+ | 0.5358 | 18100 | 0.0546 | - |
516
+ | 0.5373 | 18150 | 0.0446 | - |
517
+ | 0.5388 | 18200 | 0.0645 | - |
518
+ | 0.5403 | 18250 | 0.0107 | - |
519
+ | 0.5417 | 18300 | 0.0069 | - |
520
+ | 0.5432 | 18350 | 0.0235 | - |
521
+ | 0.5447 | 18400 | 0.0014 | - |
522
+ | 0.5462 | 18450 | 0.0337 | - |
523
+ | 0.5477 | 18500 | 0.0142 | - |
524
+ | 0.5491 | 18550 | 0.0142 | - |
525
+ | 0.5506 | 18600 | 0.0503 | - |
526
+ | 0.5521 | 18650 | 0.0015 | - |
527
+ | 0.5536 | 18700 | 0.0242 | - |
528
+ | 0.5551 | 18750 | 0.0007 | - |
529
+ | 0.5565 | 18800 | 0.0529 | - |
530
+ | 0.5580 | 18850 | 0.0313 | - |
531
+ | 0.5595 | 18900 | 0.0886 | - |
532
+ | 0.5610 | 18950 | 0.0335 | - |
533
+ | 0.5625 | 19000 | 0.0311 | - |
534
+ | 0.5639 | 19050 | 0.0105 | - |
535
+ | 0.5654 | 19100 | 0.0116 | - |
536
+ | 0.5669 | 19150 | 0.0559 | - |
537
+ | 0.5684 | 19200 | 0.0945 | - |
538
+ | 0.5699 | 19250 | 0.0826 | - |
539
+ | 0.5713 | 19300 | 0.0266 | - |
540
+ | 0.5728 | 19350 | 0.0769 | - |
541
+ | 0.5743 | 19400 | 0.0912 | - |
542
+ | 0.5758 | 19450 | 0.0641 | - |
543
+ | 0.5773 | 19500 | 0.0541 | - |
544
+ | 0.5787 | 19550 | 0.0769 | - |
545
+ | 0.5802 | 19600 | 0.0411 | - |
546
+ | 0.5817 | 19650 | 0.115 | - |
547
+ | 0.5832 | 19700 | 0.0819 | - |
548
+ | 0.5847 | 19750 | 0.071 | - |
549
+ | 0.5861 | 19800 | 0.0066 | - |
550
+ | 0.5876 | 19850 | 0.0659 | - |
551
+ | 0.5891 | 19900 | 0.07 | - |
552
+ | 0.5906 | 19950 | 0.0607 | - |
553
+ | 0.5921 | 20000 | 0.0474 | - |
554
+ | 0.5935 | 20050 | 0.016 | - |
555
+ | 0.5950 | 20100 | 0.0122 | - |
556
+ | 0.5965 | 20150 | 0.0333 | - |
557
+ | 0.5980 | 20200 | 0.0155 | - |
558
+ | 0.5995 | 20250 | 0.0005 | - |
559
+ | 0.6009 | 20300 | 0.015 | - |
560
+ | 0.6024 | 20350 | 0.0014 | - |
561
+ | 0.6039 | 20400 | 0.0459 | - |
562
+ | 0.6054 | 20450 | 0.0808 | - |
563
+ | 0.6069 | 20500 | 0.1034 | - |
564
+ | 0.6083 | 20550 | 0.0846 | - |
565
+ | 0.6098 | 20600 | 0.071 | - |
566
+ | 0.6113 | 20650 | 0.0486 | - |
567
+ | 0.6128 | 20700 | 0.022 | - |
568
+ | 0.6143 | 20750 | 0.0016 | - |
569
+ | 0.6157 | 20800 | 0.0666 | - |
570
+ | 0.6172 | 20850 | 0.0461 | - |
571
+ | 0.6187 | 20900 | 0.022 | - |
572
+ | 0.6202 | 20950 | 0.0449 | - |
573
+ | 0.6217 | 21000 | 0.0844 | - |
574
+ | 0.6231 | 21050 | 0.0888 | - |
575
+ | 0.6246 | 21100 | 0.0219 | - |
576
+ | 0.6261 | 21150 | 0.0005 | - |
577
+ | 0.6276 | 21200 | 0.025 | - |
578
+ | 0.6291 | 21250 | 0.1285 | - |
579
+ | 0.6306 | 21300 | 0.0224 | - |
580
+ | 0.6320 | 21350 | 0.0444 | - |
581
+ | 0.6335 | 21400 | 0.0133 | - |
582
+ | 0.6350 | 21450 | 0.0317 | - |
583
+ | 0.6365 | 21500 | 0.0457 | - |
584
+ | 0.6380 | 21550 | 0.0997 | - |
585
+ | 0.6394 | 21600 | 0.0689 | - |
586
+ | 0.6409 | 21650 | 0.0275 | - |
587
+ | 0.6424 | 21700 | 0.014 | - |
588
+ | 0.6439 | 21750 | 0.0304 | - |
589
+ | 0.6454 | 21800 | 0.072 | - |
590
+ | 0.6468 | 21850 | 0.0556 | - |
591
+ | 0.6483 | 21900 | 0.0902 | - |
592
+ | 0.6498 | 21950 | 0.0153 | - |
593
+ | 0.6513 | 22000 | 0.0759 | - |
594
+ | 0.6528 | 22050 | 0.0905 | - |
595
+ | 0.6542 | 22100 | 0.1058 | - |
596
+ | 0.6557 | 22150 | 0.0524 | - |
597
+ | 0.6572 | 22200 | 0.0711 | - |
598
+ | 0.6587 | 22250 | 0.0201 | - |
599
+ | 0.6602 | 22300 | 0.0367 | - |
600
+ | 0.6616 | 22350 | 0.0513 | - |
601
+ | 0.6631 | 22400 | 0.0187 | - |
602
+ | 0.6646 | 22450 | 0.027 | - |
603
+ | 0.6661 | 22500 | 0.0643 | - |
604
+ | 0.6676 | 22550 | 0.0334 | - |
605
+ | 0.6690 | 22600 | 0.023 | - |
606
+ | 0.6705 | 22650 | 0.1438 | - |
607
+ | 0.6720 | 22700 | 0.0051 | - |
608
+ | 0.6735 | 22750 | 0.0335 | - |
609
+ | 0.6750 | 22800 | 0.0879 | - |
610
+ | 0.6764 | 22850 | 0.003 | - |
611
+ | 0.6779 | 22900 | 0.0061 | - |
612
+ | 0.6794 | 22950 | 0.104 | - |
613
+ | 0.6809 | 23000 | 0.0575 | - |
614
+ | 0.6824 | 23050 | 0.0009 | - |
615
+ | 0.6838 | 23100 | 0.001 | - |
616
+ | 0.6853 | 23150 | 0.01 | - |
617
+ | 0.6868 | 23200 | 0.0018 | - |
618
+ | 0.6883 | 23250 | 0.036 | - |
619
+ | 0.6898 | 23300 | 0.0011 | - |
620
+ | 0.6912 | 23350 | 0.0033 | - |
621
+ | 0.6927 | 23400 | 0.117 | - |
622
+ | 0.6942 | 23450 | 0.0177 | - |
623
+ | 0.6957 | 23500 | 0.0547 | - |
624
+ | 0.6972 | 23550 | 0.061 | - |
625
+ | 0.6986 | 23600 | 0.06 | - |
626
+ | 0.7001 | 23650 | 0.0259 | - |
627
+ | 0.7016 | 23700 | 0.1325 | - |
628
+ | 0.7031 | 23750 | 0.0298 | - |
629
+ | 0.7046 | 23800 | 0.0046 | - |
630
+ | 0.7060 | 23850 | 0.0129 | - |
631
+ | 0.7075 | 23900 | 0.0085 | - |
632
+ | 0.7090 | 23950 | 0.015 | - |
633
+ | 0.7105 | 24000 | 0.0205 | - |
634
+ | 0.7120 | 24050 | 0.0135 | - |
635
+ | 0.7134 | 24100 | 0.0408 | - |
636
+ | 0.7149 | 24150 | 0.0014 | - |
637
+ | 0.7164 | 24200 | 0.0305 | - |
638
+ | 0.7179 | 24250 | 0.0241 | - |
639
+ | 0.7194 | 24300 | 0.0621 | - |
640
+ | 0.7208 | 24350 | 0.0014 | - |
641
+ | 0.7223 | 24400 | 0.0522 | - |
642
+ | 0.7238 | 24450 | 0.1001 | - |
643
+ | 0.7253 | 24500 | 0.0007 | - |
644
+ | 0.7268 | 24550 | 0.0045 | - |
645
+ | 0.7282 | 24600 | 0.0282 | - |
646
+ | 0.7297 | 24650 | 0.022 | - |
647
+ | 0.7312 | 24700 | 0.107 | - |
648
+ | 0.7327 | 24750 | 0.0363 | - |
649
+ | 0.7342 | 24800 | 0.0943 | - |
650
+ | 0.7356 | 24850 | 0.0015 | - |
651
+ | 0.7371 | 24900 | 0.0266 | - |
652
+ | 0.7386 | 24950 | 0.0113 | - |
653
+ | 0.7401 | 25000 | 0.0283 | - |
654
+ | 0.7416 | 25050 | 0.1304 | - |
655
+ | 0.7430 | 25100 | 0.0199 | - |
656
+ | 0.7445 | 25150 | 0.0014 | - |
657
+ | 0.7460 | 25200 | 0.0594 | - |
658
+ | 0.7475 | 25250 | 0.1188 | - |
659
+ | 0.7490 | 25300 | 0.0325 | - |
660
+ | 0.7504 | 25350 | 0.0715 | - |
661
+ | 0.7519 | 25400 | 0.0352 | - |
662
+ | 0.7534 | 25450 | 0.0165 | - |
663
+ | 0.7549 | 25500 | 0.0025 | - |
664
+ | 0.7564 | 25550 | 0.0017 | - |
665
+ | 0.7578 | 25600 | 0.0584 | - |
666
+ | 0.7593 | 25650 | 0.0251 | - |
667
+ | 0.7608 | 25700 | 0.0155 | - |
668
+ | 0.7623 | 25750 | 0.0304 | - |
669
+ | 0.7638 | 25800 | 0.0461 | - |
670
+ | 0.7652 | 25850 | 0.0347 | - |
671
+ | 0.7667 | 25900 | 0.1044 | - |
672
+ | 0.7682 | 25950 | 0.0174 | - |
673
+ | 0.7697 | 26000 | 0.0077 | - |
674
+ | 0.7712 | 26050 | 0.0264 | - |
675
+ | 0.7726 | 26100 | 0.0437 | - |
676
+ | 0.7741 | 26150 | 0.053 | - |
677
+ | 0.7756 | 26200 | 0.0721 | - |
678
+ | 0.7771 | 26250 | 0.0278 | - |
679
+ | 0.7786 | 26300 | 0.0107 | - |
680
+ | 0.7800 | 26350 | 0.0237 | - |
681
+ | 0.7815 | 26400 | 0.035 | - |
682
+ | 0.7830 | 26450 | 0.0322 | - |
683
+ | 0.7845 | 26500 | 0.0641 | - |
684
+ | 0.7860 | 26550 | 0.0219 | - |
685
+ | 0.7874 | 26600 | 0.0256 | - |
686
+ | 0.7889 | 26650 | 0.0559 | - |
687
+ | 0.7904 | 26700 | 0.0463 | - |
688
+ | 0.7919 | 26750 | 0.0992 | - |
689
+ | 0.7934 | 26800 | 0.062 | - |
690
+ | 0.7948 | 26850 | 0.0038 | - |
691
+ | 0.7963 | 26900 | 0.0521 | - |
692
+ | 0.7978 | 26950 | 0.011 | - |
693
+ | 0.7993 | 27000 | 0.0109 | - |
694
+ | 0.8008 | 27050 | 0.0483 | - |
695
+ | 0.8022 | 27100 | 0.0379 | - |
696
+ | 0.8037 | 27150 | 0.0231 | - |
697
+ | 0.8052 | 27200 | 0.0888 | - |
698
+ | 0.8067 | 27250 | 0.0197 | - |
699
+ | 0.8082 | 27300 | 0.0003 | - |
700
+ | 0.8097 | 27350 | 0.0157 | - |
701
+ | 0.8111 | 27400 | 0.0192 | - |
702
+ | 0.8126 | 27450 | 0.0802 | - |
703
+ | 0.8141 | 27500 | 0.0407 | - |
704
+ | 0.8156 | 27550 | 0.0351 | - |
705
+ | 0.8171 | 27600 | 0.001 | - |
706
+ | 0.8185 | 27650 | 0.0007 | - |
707
+ | 0.8200 | 27700 | 0.021 | - |
708
+ | 0.8215 | 27750 | 0.0548 | - |
709
+ | 0.8230 | 27800 | 0.0442 | - |
710
+ | 0.8245 | 27850 | 0.0561 | - |
711
+ | 0.8259 | 27900 | 0.0181 | - |
712
+ | 0.8274 | 27950 | 0.0669 | - |
713
+ | 0.8289 | 28000 | 0.016 | - |
714
+ | 0.8304 | 28050 | 0.0817 | - |
715
+ | 0.8319 | 28100 | 0.0221 | - |
716
+ | 0.8333 | 28150 | 0.0014 | - |
717
+ | 0.8348 | 28200 | 0.0195 | - |
718
+ | 0.8363 | 28250 | 0.0735 | - |
719
+ | 0.8378 | 28300 | 0.002 | - |
720
+ | 0.8393 | 28350 | 0.0269 | - |
721
+ | 0.8407 | 28400 | 0.0365 | - |
722
+ | 0.8422 | 28450 | 0.0825 | - |
723
+ | 0.8437 | 28500 | 0.0382 | - |
724
+ | 0.8452 | 28550 | 0.0144 | - |
725
+ | 0.8467 | 28600 | 0.0529 | - |
726
+ | 0.8481 | 28650 | 0.0042 | - |
727
+ | 0.8496 | 28700 | 0.0532 | - |
728
+ | 0.8511 | 28750 | 0.0195 | - |
729
+ | 0.8526 | 28800 | 0.018 | - |
730
+ | 0.8541 | 28850 | 0.005 | - |
731
+ | 0.8555 | 28900 | 0.0694 | - |
732
+ | 0.8570 | 28950 | 0.0006 | - |
733
+ | 0.8585 | 29000 | 0.0169 | - |
734
+ | 0.8600 | 29050 | 0.0188 | - |
735
+ | 0.8615 | 29100 | 0.0002 | - |
736
+ | 0.8629 | 29150 | 0.0246 | - |
737
+ | 0.8644 | 29200 | 0.001 | - |
738
+ | 0.8659 | 29250 | 0.0017 | - |
739
+ | 0.8674 | 29300 | 0.0169 | - |
740
+ | 0.8689 | 29350 | 0.0621 | - |
741
+ | 0.8703 | 29400 | 0.0017 | - |
742
+ | 0.8718 | 29450 | 0.0008 | - |
743
+ | 0.8733 | 29500 | 0.0086 | - |
744
+ | 0.8748 | 29550 | 0.0214 | - |
745
+ | 0.8763 | 29600 | 0.0495 | - |
746
+ | 0.8777 | 29650 | 0.0864 | - |
747
+ | 0.8792 | 29700 | 0.0844 | - |
748
+ | 0.8807 | 29750 | 0.0738 | - |
749
+ | 0.8822 | 29800 | 0.0007 | - |
750
+ | 0.8837 | 29850 | 0.0408 | - |
751
+ | 0.8851 | 29900 | 0.0025 | - |
752
+ | 0.8866 | 29950 | 0.0313 | - |
753
+ | 0.8881 | 30000 | 0.0178 | - |
754
+ | 0.8896 | 30050 | 0.0123 | - |
755
+ | 0.8911 | 30100 | 0.0001 | - |
756
+ | 0.8925 | 30150 | 0.0031 | - |
757
+ | 0.8940 | 30200 | 0.0035 | - |
758
+ | 0.8955 | 30250 | 0.0278 | - |
759
+ | 0.8970 | 30300 | 0.034 | - |
760
+ | 0.8985 | 30350 | 0.0255 | - |
761
+ | 0.8999 | 30400 | 0.0012 | - |
762
+ | 0.9014 | 30450 | 0.0756 | - |
763
+ | 0.9029 | 30500 | 0.0813 | - |
764
+ | 0.9044 | 30550 | 0.0024 | - |
765
+ | 0.9059 | 30600 | 0.1491 | - |
766
+ | 0.9073 | 30650 | 0.0009 | - |
767
+ | 0.9088 | 30700 | 0.0299 | - |
768
+ | 0.9103 | 30750 | 0.0226 | - |
769
+ | 0.9118 | 30800 | 0.0198 | - |
770
+ | 0.9133 | 30850 | 0.0019 | - |
771
+ | 0.9147 | 30900 | 0.0406 | - |
772
+ | 0.9162 | 30950 | 0.0168 | - |
773
+ | 0.9177 | 31000 | 0.0409 | - |
774
+ | 0.9192 | 31050 | 0.0016 | - |
775
+ | 0.9207 | 31100 | 0.0172 | - |
776
+ | 0.9221 | 31150 | 0.0131 | - |
777
+ | 0.9236 | 31200 | 0.1433 | - |
778
+ | 0.9251 | 31250 | 0.0316 | - |
779
+ | 0.9266 | 31300 | 0.0774 | - |
780
+ | 0.9281 | 31350 | 0.1256 | - |
781
+ | 0.9295 | 31400 | 0.0257 | - |
782
+ | 0.9310 | 31450 | 0.2166 | - |
783
+ | 0.9325 | 31500 | 0.0023 | - |
784
+ | 0.9340 | 31550 | 0.0261 | - |
785
+ | 0.9355 | 31600 | 0.0143 | - |
786
+ | 0.9369 | 31650 | 0.0005 | - |
787
+ | 0.9384 | 31700 | 0.0522 | - |
788
+ | 0.9399 | 31750 | 0.024 | - |
789
+ | 0.9414 | 31800 | 0.0353 | - |
790
+ | 0.9429 | 31850 | 0.0022 | - |
791
+ | 0.9443 | 31900 | 0.0006 | - |
792
+ | 0.9458 | 31950 | 0.0321 | - |
793
+ | 0.9473 | 32000 | 0.0879 | - |
794
+ | 0.9488 | 32050 | 0.0007 | - |
795
+ | 0.9503 | 32100 | 0.003 | - |
796
+ | 0.9517 | 32150 | 0.0295 | - |
797
+ | 0.9532 | 32200 | 0.0817 | - |
798
+ | 0.9547 | 32250 | 0.0345 | - |
799
+ | 0.9562 | 32300 | 0.0004 | - |
800
+ | 0.9577 | 32350 | 0.0112 | - |
801
+ | 0.9591 | 32400 | 0.0284 | - |
802
+ | 0.9606 | 32450 | 0.0654 | - |
803
+ | 0.9621 | 32500 | 0.036 | - |
804
+ | 0.9636 | 32550 | 0.0181 | - |
805
+ | 0.9651 | 32600 | 0.0374 | - |
806
+ | 0.9665 | 32650 | 0.0022 | - |
807
+ | 0.9680 | 32700 | 0.0706 | - |
808
+ | 0.9695 | 32750 | 0.0009 | - |
809
+ | 0.9710 | 32800 | 0.0077 | - |
810
+ | 0.9725 | 32850 | 0.0016 | - |
811
+ | 0.9739 | 32900 | 0.0586 | - |
812
+ | 0.9754 | 32950 | 0.0134 | - |
813
+ | 0.9769 | 33000 | 0.0108 | - |
814
+ | 0.9784 | 33050 | 0.0839 | - |
815
+ | 0.9799 | 33100 | 0.0032 | - |
816
+ | 0.9813 | 33150 | 0.0152 | - |
817
+ | 0.9828 | 33200 | 0.049 | - |
818
+ | 0.9843 | 33250 | 0.038 | - |
819
+ | 0.9858 | 33300 | 0.0302 | - |
820
+ | 0.9873 | 33350 | 0.0193 | - |
821
+ | 0.9888 | 33400 | 0.0291 | - |
822
+ | 0.9902 | 33450 | 0.0083 | - |
823
+ | 0.9917 | 33500 | 0.0014 | - |
824
+ | 0.9932 | 33550 | 0.0223 | - |
825
+ | 0.9947 | 33600 | 0.0154 | - |
826
+ | 0.9962 | 33650 | 0.0788 | - |
827
+ | 0.9976 | 33700 | 0.0567 | - |
828
+ | 0.9991 | 33750 | 0.0207 | - |
829
 
830
  ### Framework Versions
831
  - Python: 3.11.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e690fa2f3a3eb1af3c1034a232ad7ae6b88220f48f5bb2c531caf2700e94f77e
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a60ffd8e92e4efb6ecb75b0ee481955bd29313582c110aaa7b12a34690ca21c
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9cebd294c4ca0c4ea8b633dac1f631bddbaec619d472af66fe08bfc9c77d1a70
3
  size 6991
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e485b3eda8dc715044c94454941a492659bdd8f7ab458206c48a6d16731ee3b
3
  size 6991