Remek commited on
Commit
a60ce80
1 Parent(s): 718a200

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +239 -0
  2. config.json +26 -0
  3. qmodel.pt +3 -0
  4. special_tokens_map.json +23 -0
  5. tokenizer.json +0 -0
  6. tokenizer.model +3 -0
  7. tokenizer_config.json +43 -0
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pl
4
+ license: cc-by-nc-4.0
5
+ library_name: transformers
6
+ tags:
7
+ - finetuned
8
+ - hqq
9
+ inference:
10
+ parameters:
11
+ temperature: 0.6
12
+ widget:
13
+ - messages:
14
+ - role: user
15
+ content: Co przedstawia polskie godło?
16
+ ---
17
+
18
+ <p align="center">
19
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1/raw/main/speakleash_cyfronet.png">
20
+ </p>
21
+
22
+ # Bielik-7B-Instruct-v0.1
23
+
24
+ The Bielik-7B-Instruct-v0.1 is an instruct fine-tuned version of the [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1). Forementioned model stands as a testament to the unique collaboration between the open-science/open-souce project SpeakLeash and the High Performance Computing (HPC) center: ACK Cyfronet AGH. Developed and trained on Polish text corpora, which has been cherry-picked and processed by the SpeakLeash team, this endeavor leverages Polish large-scale computing infrastructure, specifically within the PLGrid environment, and more precisely, the HPC centers: ACK Cyfronet AGH. The creation and training of the Bielik-7B-Instruct-v0.1 was propelled by the support of computational grant number PLG/2024/016951, conducted on the Helios supercomputer, enabling the use of cutting-edge technology and computational resources essential for large-scale machine learning processes. As a result, the model exhibits an exceptional ability to understand and process the Polish language, providing accurate responses and performing a variety of linguistic tasks with high precision.
25
+
26
+ [We have prepared quantized versions of the model as well as MLX format.](#quant-and-mlx-versions)
27
+
28
+ ## Model
29
+
30
+ The [SpeakLeash](https://speakleash.org/) team is working on their own set of instructions in Polish, which is continuously being expanded and refined by annotators. A portion of these instructions, which had been manually verified and corrected, has been utilized for training purposes. Moreover, due to the limited availability of high-quality instructions in Polish, publicly accessible collections of instructions in English were used - [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) and [orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k), which accounted for half of the instructions used in training. The instructions varied in quality, leading to a deterioration in model’s performance. To counteract this while still allowing ourselves to utilize forementioned datasets,several improvements were introduced:
31
+ * Weighted tokens level loss - a strategy inspired by [offline reinforcement learning](https://arxiv.org/abs/2005.01643) and [C-RLFT](https://arxiv.org/abs/2309.11235)
32
+ * Adaptive learning rate inspired by the study on [Learning Rates as a Function of Batch Size](https://arxiv.org/abs/2006.09092)
33
+ * Masked user instructions
34
+
35
+ Bielik-7B-Instruct-v0.1 has been trained with the use of an original open source framework called [ALLaMo](https://github.com/chrisociepa/allamo) implemented by [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/). This framework allows users to train language models with architecture similar to LLaMA and Mistral in fast and efficient way.
36
+
37
+
38
+ ### Model description:
39
+
40
+ * **Developed by:** [SpeakLeash](https://speakleash.org/)
41
+ * **Language:** Polish
42
+ * **Model type:** causal decoder-only
43
+ * **Finetuned from:** [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1)
44
+ * **License:** CC BY NC 4.0 (non-commercial use)
45
+ * **Model ref:** speakleash:e38140bea0d48f1218540800bbc67e89
46
+
47
+ ## Training
48
+
49
+ * Framework: [ALLaMo](https://github.com/chrisociepa/allamo)
50
+ * Visualizations: [W&B](https://wandb.ai)
51
+
52
+ <p align="center">
53
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1/raw/main/sft_train_loss.png">
54
+ </p>
55
+ <p align="center">
56
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1/raw/main/sft_train_ppl.png">
57
+ </p>
58
+ <p align="center">
59
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1/raw/main/sft_train_lr.png">
60
+ </p>
61
+
62
+ ### Training hyperparameters:
63
+
64
+ | **Hyperparameter** | **Value** |
65
+ |-----------------------------|------------------|
66
+ | Micro Batch Size | 1 |
67
+ | Batch Size | up to 4194304 |
68
+ | Learning Rate (cosine, adaptive) | 7e-6 -> 6e-7 |
69
+ | Warmup Iterations | 50 |
70
+ | All Iterations | 55440 |
71
+ | Optimizer | AdamW |
72
+ | β1, β2 | 0.9, 0.95 |
73
+ | Adam_eps | 1e−8 |
74
+ | Weight Decay | 0.05 |
75
+ | Grad Clip | 1.0 |
76
+ | Precision | bfloat16 (mixed) |
77
+
78
+
79
+ ### Quant and MLX versions:
80
+ We know that some people want to explore smaller models or don't have the resources to run a full model. Therefore, we have prepared quantized versions of the Bielik-7B-Instruct-v0.1 model. We are also mindful of Apple Silicon.
81
+ <br>
82
+ <br>
83
+ Quantized versions (for non-GPU / weaker GPU):
84
+ - https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-GGUF
85
+ - https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-GPTQ
86
+ - https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-AWQ
87
+ - https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-EXL2
88
+
89
+ For Apple Silicon:
90
+ - https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-MLX
91
+
92
+
93
+ ### Instruction format
94
+
95
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should start with the beginning of a sentence token. The generated completion will be finished by the end-of-sentence token.
96
+
97
+ E.g.
98
+ ```
99
+ prompt = "<s>[INST] Jakie mamy pory roku? [/INST]"
100
+ completion = "W Polsce mamy 4 pory roku: wiosna, lato, jesień i zima.</s>"
101
+ ```
102
+
103
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
104
+
105
+ ```python
106
+ from transformers import AutoModelForCausalLM, AutoTokenizer
107
+
108
+ device = "cuda" # the device to load the model onto
109
+
110
+ model_name = "speakleash/Bielik-7B-Instruct-v0.1"
111
+
112
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
113
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
114
+
115
+ messages = [
116
+ {"role": "user", "content": "Jakie mamy pory roku w Polsce?"},
117
+ {"role": "assistant", "content": "W Polsce mamy 4 pory roku: wiosna, lato, jesień i zima."},
118
+ {"role": "user", "content": "Która jest najcieplejsza?"}
119
+ ]
120
+
121
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
122
+
123
+ model_inputs = input_ids.to(device)
124
+ model.to(device)
125
+
126
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
127
+ decoded = tokenizer.batch_decode(generated_ids)
128
+ print(decoded[0])
129
+ ```
130
+
131
+ ## Evaluation
132
+
133
+
134
+ Models have been evaluated on [Open PL LLM Leaderboard](https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard) 5-shot. The benchmark evaluates models in NLP tasks like sentiment analysis, categorization, text classification but does not test chatting skills. Here are presented:
135
+ - Average - average score among all tasks normalized by baseline scores
136
+ - Reranking - reranking task, commonly used in RAG
137
+ - Reader (Generator) - open book question answering task, commonly used in RAG
138
+ - Perplexity (lower is better) - as a bonus, does not correlate with other scores and should not be used for model comparison
139
+
140
+ As of April 3, 2024, the following table showcases the current scores of pretrained and continuously pretrained models according to the Open PL LLM Leaderboard, evaluated in a 5-shot setting:
141
+
142
+ | | Average | RAG Reranking | RAG Reader | Perplexity |
143
+ |--------------------------------------------------------------------------------------|----------:|--------------:|-----------:|-----------:|
144
+ | **7B parameters models:** | | | | |
145
+ | Baseline (majority class) | 0.00 | 53.36 | - | - |
146
+ | Voicelab/trurl-2-7b | 18.85 | 60.67 | 77.19 | 1098.88 |
147
+ | meta-llama/Llama-2-7b-chat-hf | 21.04 | 54.65 | 72.93 | 4018.74 |
148
+ | mistralai/Mistral-7B-Instruct-v0.1 | 26.42 | 56.35 | 73.68 | 6909.94 |
149
+ | szymonrucinski/Curie-7B-v1 | 26.72 | 55.58 | 85.19 | 389.17 |
150
+ | HuggingFaceH4/zephyr-7b-beta | 33.15 | 71.65 | 71.27 | 3613.14 |
151
+ | HuggingFaceH4/zephyr-7b-alpha | 33.97 | 71.47 | 73.35 | 4464.45 |
152
+ | internlm/internlm2-chat-7b-sft | 36.97 | 73.22 | 69.96 | 4269.63 |
153
+ | internlm/internlm2-chat-7b | 37.64 | 72.29 | 71.17 | 3892.50 |
154
+ | [Bielik-7B-Instruct-v0.1](https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1) | 39.28 | 61.89 | **86.00** | 277.92 |
155
+ | mistralai/Mistral-7B-Instruct-v0.2 | 40.29 | 72.58 | 79.39 | 2088.08 |
156
+ | teknium/OpenHermes-2.5-Mistral-7B | 42.64 | 70.63 | 80.25 | 1463.00 |
157
+ | openchat/openchat-3.5-1210 | 44.17 | 71.76 | 82.15 | 1923.83 |
158
+ | speakleash/mistral_7B-v2/spkl-all_sft_v2/e1_base/spkl-all_2e6-e1_70c70cc6 (experimental) | 45.44 | 71.27 | 91.50 | 279.24 |
159
+ | Nexusflow/Starling-LM-7B-beta | 45.69 | 74.58 | 81.22 | 1161.54 |
160
+ | openchat/openchat-3.5-0106 | 47.32 | 74.71 | 83.60 | 1106.56 |
161
+ | berkeley-nest/Starling-LM-7B-alpha | **47.46** | **75.73** | 82.86 | 1438.04 |
162
+ | | | | | |
163
+ | **Models with different sizes:** | | | | |
164
+ | Azurro/APT3-1B-Instruct-v1 (1B) | -13.80 | 52.11 | 12.23 | 739.09 |
165
+ | Voicelab/trurl-2-13b-academic (13B) | 29.45 | 68.19 | 79.88 | 733.91 |
166
+ | upstage/SOLAR-10.7B-Instruct-v1.0 (10.7B) | 46.07 | 76.93 | 82.86 | 789.58 |
167
+ | | | | | |
168
+ | **7B parameters pretrained and continously pretrained models:** | | | | |
169
+ | OPI-PG/Qra-7b | 11.13 | 54.40 | 75.25 | 203.36 |
170
+ | meta-llama/Llama-2-7b-hf | 12.73 | 54.02 | 77.92 | 850.45 |
171
+ | internlm/internlm2-base-7b | 20.68 | 52.39 | 69.85 | 3110.92 |
172
+ | [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1) | 29.38 | 62.13 | **88.39** | 123.31 |
173
+ | mistralai/Mistral-7B-v0.1 | 30.67 | 60.35 | 85.39 | 857.32 |
174
+ | internlm/internlm2-7b | 33.03 | 69.39 | 73.63 | 5498.23 |
175
+ | alpindale/Mistral-7B-v0.2-hf | 33.05 | 60.23 | 85.21 | 932.60 |
176
+ | speakleash/mistral-apt3-7B/spi-e0_hf (experimental) | 35.50 | 62.14 | **87.48** | 132.78 |
177
+
178
+ SpeakLeash models have one of the best scores in the RAG Reader task.
179
+ We have managed to increase Average score by almost 9 pp. in comparison to Mistral-7B-v0.1.
180
+ In our subjective evaluations of chatting skills SpeakLeash models perform better than other models with higher Average scores.
181
+
182
+ The results in the above table were obtained without utilizing instruction templates for instructional models, instead treating them like base models.
183
+ This approach could skew the results, as instructional models are optimized with specific instructions in mind.
184
+
185
+ ## Limitations and Biases
186
+
187
+ Bielik-7B-Instruct-v0.1 is a quick demonstration that the base model can be easily fine-tuned to achieve compelling and promising performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community in ways to make the model respect guardrails, allowing for deployment in environments requiring moderated outputs.
188
+
189
+ Bielik-7B-Instruct-v0.1 can produce factually incorrect output, and should not be relied on to produce factually accurate data. Bielik-7B-Instruct-v0.1 was trained on various public datasets. While great efforts have been taken to clear the training data, it is possible that this model can generate lewd, false, biased or otherwise offensive outputs.
190
+
191
+ ## License
192
+
193
+ Because of an unclear legal situation, we have decided to publish the model under CC BY NC 4.0 license - it allows for non-commercial use. The model can be used for scientific purposes and privately, as long as the license conditions are met.
194
+
195
+ ## Citation
196
+ Please cite this model using the following format:
197
+
198
+ ```
199
+ @misc{Bielik7Bv01,
200
+ title = {Introducing Bielik-7B-Instruct-v0.1: Instruct Polish Language Model},
201
+ author = {Ociepa, Krzysztof and Flis, Łukasz and Wróbel, Krzysztof and Kondracki, Sebastian and {SpeakLeash Team} and {Cyfronet Team}},
202
+ year = {2024},
203
+ url = {https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1},
204
+ note = {Accessed: 2024-04-01}, % change this date
205
+ urldate = {2024-04-01} % change this date
206
+ }
207
+ ```
208
+
209
+ ## Responsible for training the model
210
+
211
+ * [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, data preparation, process optimization and oversight of training
212
+ * [Łukasz Flis](https://www.linkedin.com/in/lukasz-flis-0a39631/)<sup>Cyfronet AGH</sup> - coordinating and supervising the training
213
+ * [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/)<sup>SpeakLeash</sup> - benchmarks
214
+ * [Sebastian Kondracki](https://www.linkedin.com/in/sebastian-kondracki/)<sup>SpeakLeash</sup> - coordinating and preparation of instructions
215
+ * [Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/)<sup>SpeakLeash</sup> - preparation of instructions
216
+ * [Paweł Kiszczak](https://www.linkedin.com/in/paveu-kiszczak/)<sup>SpeakLeash</sup> - preparation of instructions
217
+ * [Adrian Gwoździej](https://www.linkedin.com/in/adrgwo/)<sup>SpeakLeash</sup> - data quality and instructions cleaning
218
+ * [Igor Ciuciura](https://www.linkedin.com/in/igor-ciuciura-1763b52a6/)<sup>SpeakLeash</sup> - instructions cleaning
219
+ * [Jacek Chwiła](https://www.linkedin.com/in/jacek-chwila/)<sup>SpeakLeash</sup> - instructions cleaning
220
+
221
+ The model could not have been created without the commitment and work of the entire SpeakLeash team, whose contribution is invaluable. Thanks to the hard work of many individuals, it was possible to gather a large amount of content in Polish and establish collaboration between the open-science SpeakLeash project and the HPC center: ACK Cyfronet AGH. Individuals who contributed to the creation of the model through their commitment to the open-science SpeakLeash project:
222
+ [Grzegorz Urbanowicz](https://www.linkedin.com/in/grzegorz-urbanowicz-05823469/),
223
+ [Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/),
224
+ [Paweł Cyrta](https://www.linkedin.com/in/cyrta),
225
+ [Jan Maria Kowalski](https://www.linkedin.com/in/janmariakowalski/),
226
+ [Karol Jezierski](https://www.linkedin.com/in/karol-jezierski/),
227
+ [Kamil Nonckiewicz](https://www.linkedin.com/in/kamil-nonckiewicz/),
228
+ [Izabela Babis](https://www.linkedin.com/in/izabela-babis-2274b8105/),
229
+ [Nina Babis](https://www.linkedin.com/in/nina-babis-00055a140/),
230
+ [Waldemar Boszko](https://www.linkedin.com/in/waldemarboszko),
231
+ [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/),
232
+ and many other wonderful researchers and enthusiasts of the AI world.
233
+
234
+ Members of the ACK Cyfronet AGH team providing valuable support and expertise:
235
+ [Szymon Mazurek](https://www.linkedin.com/in/sz-mazurek-ai/).
236
+
237
+ ## Contact Us
238
+
239
+ If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/3G9DVM39).
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Bielik-7B-Instruct-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.2",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
qmodel.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b145d36fd2c6cba8d2e9ece10080459630dc1697cd2a5d16a7e464c1c6375974
3
+ size 3524125440
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": null,
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }