File size: 1,280 Bytes
622f774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2Processor
import torch
# checkpoints to leverage
encoder_id = "facebook/wav2vec2-large-lv60"
decoder_id = "facebook/bart-large"
feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
feature_extractor.save_pretrained("./")
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
tokenizer.save_pretrained("./")
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=False)
model.config.encoder.feat_proj_dropout = 0.0
model.config.encoder.final_dropout = 0.0
model.config.encoder.mask_time_prob = 0.1
model.config.decoder_start_token_id = model.decoder.config.bos_token_id
model.config.pad_token_id = model.decoder.config.pad_token_id
model.config.eos_token_id = model.decoder.config.eos_token_id
model.config.max_length = 50
model.config.num_beams = 1
model.config.encoder.layerdrop = 0.0
model.config.use_cache = False
model.config.decoder.use_cache = False
model.config.processor_class = "Wav2Vec2Processor"
# freeze entire encoder
for param in model.encoder.parameters():
param.requires_grad = False
# check if generation works
out = model.generate(torch.ones((1, 2000)))
model.save_pretrained("./")
|