|
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2Processor |
|
import torch |
|
|
|
|
|
encoder_id = "facebook/wav2vec2-large-lv60" |
|
decoder_id = "bert-large-uncased" |
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) |
|
feature_extractor.save_pretrained("./") |
|
tokenizer = AutoTokenizer.from_pretrained(decoder_id) |
|
tokenizer.save_pretrained("./") |
|
|
|
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=False) |
|
model.config.encoder.feat_proj_dropout = 0.0 |
|
model.config.encoder.final_dropout = 0.0 |
|
model.config.encoder.mask_time_prob = 0.1 |
|
model.config.decoder_start_token_id = tokenizer.cls_token_id |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
model.config.eos_token_id = tokenizer.sep_token_id |
|
model.config.max_length = 50 |
|
model.config.num_beams = 1 |
|
model.config.encoder.layerdrop = 0.0 |
|
model.config.use_cache = False |
|
model.config.decoder.use_cache = False |
|
model.config.processor_class = "Wav2Vec2Processor" |
|
|
|
|
|
for param in model.encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
out = model.generate(torch.ones((1, 2000))) |
|
|
|
model.save_pretrained("./") |
|
|
|
|
|
|