File size: 2,705 Bytes
957b82c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language: "fr"
thumbnail:
tags:
- ASR
- CTC
- Attention
- pytorch
license: "apache-2.0"
datasets:
- commonvoice
metrics:
- wer
- cer
---
# CRDNN with CTC/Attention trained on CommonVoice French (No LM)
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (FR) within
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given ASR model performance are:
| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 07-03-21 | 6.54 | 17.70 | 2xV100 16GB |
## Pipeline description
This ASR system is composed with 2 different but linked blocks:
1. Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (FR).
3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalisation and pooling on the
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
the final acoustic representation that is given to the CTC and attention decoders.
## Intended uses & limitations
This model has been primilarly developed to be run within SpeechBrain as a pretrained ASR model
for the French language. Thanks to the flexibility of SpeechBrain, any of the 2 blocks
detailed above can be extracted and connected to you custom pipeline as long as SpeechBrain is
installed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install \\we hide ! SpeechBrain is still private :p
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files
```python
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-fr")
asr_model.transcribe_file("path_to_your_file.wav")
```
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}
```
|