--- language: "en" thumbnail: tags: - automatic-speech-recognition - CTC - Attention - Tranformer - pytorch - speechbrain license: "apache-2.0" datasets: - librispeech metrics: - wer - cer ---

# CRDNN with CTC/Attention and RNNLM trained on LibriSpeech This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on LibriSpeech (EN) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given ASR model performance are: | Release | Test clean WER | Test other WER | GPUs | |:-------------:|:--------------:|:--------------:|:--------:| | 05-03-21 | 2.90 | 8.51 | 1xV100 16GB | ## Pipeline description This ASR system is composed of 3 different but linked blocks: 1. Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. 2. Neural language model (Transformer LM) trained on the full 10M words dataset. 3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalization and pooling on the frequency domain. Then, a bidirectional LSTM with projection layers is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in English) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-transformerlm-librispeech", savedir="pretrained_models/asr-crdnn-transformerlm-librispeech") asr_model.transcribe_file("speechbrain/asr-crdnn-transformerlm-librispeech/example.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain