File size: 7,694 Bytes
aedfd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# ############################################################################
# Model: Streaming E2E Conformer-Transducer ASR
# Encoder: Conformer
# Decoder: LSTM + greedy search
# Tokens: BPE with unigram
# losses: Transducer + CTC (optional) + CE (optional)
# Training: Librispeech 960h
# Authors:  Sylvain de Langen 2023, Titouan Parcollet 2023, Abdel HEBA, Mirco Ravanelli, Sung-Lin Yeh 2020
# ############################################################################

save_folder: !ref librispeech-streaming-conformer-transducer

# Training parameters
# To make Transformers converge, the global bath size should be large enough.
# The global batch size is computed as batch_size * n_gpus * grad_accumulation_factor.
# Empirically, we found that this value should be >= 128.
# Please, set your parameters accordingly.
number_of_epochs: 50
warmup_steps: 25000
num_workers: 4
batch_size_valid: 4
lr: 0.0008
weight_decay: 0.01
number_of_ctc_epochs: 40
ctc_weight: 0.3 # Multitask with CTC for the encoder (0.0 = disabled)
ce_weight: 0.0 # Multitask with CE for the decoder (0.0 = disabled)
max_grad_norm: 5.0
loss_reduction: 'batchmean'
precision: fp32 # bf16, fp16 or fp32

# The batch size is used if and only if dynamic batching is set to False
# Validation and testing are done with fixed batches and not dynamic batching.
batch_size: 8
grad_accumulation_factor: 4
sorting: ascending
avg_checkpoints: 10 # Number of checkpoints to average for evaluation

# Feature parameters
sample_rate: 16000
n_fft: 512
n_mels: 80
win_length: 32

# Streaming
streaming: True  # controls all Dynamic Chunk Training & chunk size & left context mechanisms

# This setup works well for 3090 24GB GPU, adapt it to your needs.
# Adjust grad_accumulation_factor depending on the DDP node count (here 3)
# Or turn it off (but training speed will decrease)
dynamic_batching: True
max_batch_len: 250
max_batch_len_val: 50 # we reduce it as the beam is much wider (VRAM)
num_bucket: 200

dynamic_batch_sampler:
   max_batch_len: !ref <max_batch_len>
   max_batch_len_val: !ref <max_batch_len_val>
   num_buckets: !ref <num_bucket>
   shuffle_ex: True # if true re-creates batches at each epoch shuffling examples.
   batch_ordering: random
   max_batch_ex: 256

# Model parameters
# Transformer
d_model: 512
joint_dim: 640
nhead: 8
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 1000
dec_dim: 512
dec_emb_dropout: 0.2
dec_dropout: 0.1

# Decoding parameters
blank_index: 0
bos_index: 0
eos_index: 0
pad_index: 0
beam_size: 10
nbest: 1
# by default {state,expand}_beam = 2.3 as mention in paper
# https://arxiv.org/abs/1904.02619
state_beam: 2.3
expand_beam: 2.3
lm_weight: 0.50

epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
   limit: !ref <number_of_epochs>

normalize: !new:speechbrain.processing.features.InputNormalization
   norm_type: global
   update_until_epoch: 4

compute_features: !new:speechbrain.lobes.features.Fbank
   sample_rate: !ref <sample_rate>
   n_fft: !ref <n_fft>
   n_mels: !ref <n_mels>
   win_length: !ref <win_length>

CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
   input_shape: (8, 10, 80)
   num_blocks: 2
   num_layers_per_block: 1
   out_channels: (64, 32)
   kernel_sizes: (3, 3)
   strides: (2, 2)
   residuals: (False, False)

Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
   input_size: 640
   tgt_vocab: !ref <output_neurons>
   d_model: !ref <d_model>
   nhead: !ref <nhead>
   num_encoder_layers: !ref <num_encoder_layers>
   num_decoder_layers: !ref <num_decoder_layers>
   d_ffn: !ref <d_ffn>
   dropout: !ref <transformer_dropout>
   activation: !ref <activation>
   encoder_module: conformer
   attention_type: RelPosMHAXL
   normalize_before: True
   causal: False

# We must call an encoder wrapper so the decoder isn't run (we don't have any)
enc: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
   transformer: !ref <Transformer>

# For MTL CTC over the encoder
proj_ctc: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <joint_dim>
   n_neurons: !ref <output_neurons>

# Define some projection layers to make sure that enc and dec
# output dim are the same before joining
proj_enc: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <d_model>
   n_neurons: !ref <joint_dim>
   bias: False

proj_dec: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <dec_dim>
   n_neurons: !ref <joint_dim>
   bias: False

# Uncomment for MTL with CTC
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
   blank_index: !ref <blank_index>
   reduction: !ref <loss_reduction>

emb: !new:speechbrain.nnet.embedding.Embedding
   num_embeddings: !ref <output_neurons>
   consider_as_one_hot: True
   blank_id: !ref <blank_index>

dec: !new:speechbrain.nnet.RNN.LSTM
   input_shape: [null, null, !ref <output_neurons> - 1]
   hidden_size: !ref <dec_dim>
   num_layers: 1
   re_init: True

Tjoint: !new:speechbrain.nnet.transducer.transducer_joint.Transducer_joint
   joint: sum # joint [sum | concat]
   nonlinearity: !ref <activation>

transducer_lin: !new:speechbrain.nnet.linear.Linear
   input_size: !ref <joint_dim>
   n_neurons: !ref <output_neurons>
   bias: False

log_softmax: !new:speechbrain.nnet.activations.Softmax
   apply_log: True

# for MTL
# update model if any HEAD module is added
modules:
   CNN: !ref <CNN>
   enc: !ref <enc>
   emb: !ref <emb>
   dec: !ref <dec>
   Tjoint: !ref <Tjoint>
   transducer_lin: !ref <transducer_lin>
   normalize: !ref <normalize>
   proj_ctc: !ref <proj_ctc>
   proj_dec: !ref <proj_dec>
   proj_enc: !ref <proj_enc>
#   dec_lin: !ref <dec_lin>

# for MTL
# update model if any HEAD module is added
model: !new:torch.nn.ModuleList
   - [!ref <CNN>, !ref <enc>, !ref <emb>, !ref <dec>, !ref <proj_enc>, !ref <proj_dec>, !ref <proj_ctc>, !ref <transducer_lin>]

# Tokenizer initialization
tokenizer: !new:sentencepiece.SentencePieceProcessor

Greedysearcher: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
   decode_network_lst: [!ref <emb>, !ref <dec>, !ref <proj_dec>]
   tjoint: !ref <Tjoint>
   classifier_network: [!ref <transducer_lin>]
   blank_id: !ref <blank_index>
   beam_size: 1
   nbest: 1

Beamsearcher: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
   decode_network_lst: [!ref <emb>, !ref <dec>, !ref <proj_dec>]
   tjoint: !ref <Tjoint>
   classifier_network: [!ref <transducer_lin>]
   blank_id: !ref <blank_index>
   beam_size: !ref <beam_size>
   nbest: !ref <nbest>
   # FIXME: when lm pretrained, use this
   # lm_module: !ref <lm_model>
   # lm_weight: !ref <lm_weight>
   state_beam: !ref <state_beam>
   expand_beam: !ref <expand_beam>

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
   collect_in: !ref <save_folder>
   loadables:
      model: !ref <model>
      normalizer: !ref <normalize>
      tokenizer: !ref <tokenizer>

# inference stuff

make_tokenizer_streaming_context: !name:speechbrain.tokenizers.SentencePiece.SentencePieceDecoderStreamingContext
tokenizer_decode_streaming: !name:speechbrain.tokenizers.SentencePiece.spm_decode_preserve_leading_space

fea_streaming_extractor: !new:speechbrain.lobes.features.StreamingFeatureWrapper
   module: !new:speechbrain.lobes.models.convolution.ConformerFeatureExtractorWrapper
      - !ref <compute_features>
      - !ref <normalize>
      - !ref <CNN>
   # don't consider normalization as part of the input filter chain
   properties: !!python/object/apply:speechbrain.utils.filter_analysis.stack_filter_properties
      - [!ref <compute_features>, !ref <CNN>]