File size: 4,488 Bytes
824c014 5ce8519 824c014 5ce8519 93e2d4b 93ebe74 824c014 5ce8519 695764c 5ce8519 86c1a90 5ce8519 ac187e1 3a6a474 5ce8519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
language:
- ar
thumbnail: null
pipeline_tag: automatic-speech-recognition
tags:
- whisper
- pytorch
- speechbrain
- Transformer
- hf-asr-leaderboard
license: apache-2.0
datasets:
- commonvoice
metrics:
- wer
- cer
model-index:
- name: asr-whisper-large-v2-commonvoice-ar
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CommonVoice 10.0 (Arabic)
type: mozilla-foundation/common_voice_10_0
config: ar
split: test
args:
language: ar
metrics:
- name: Test WER
type: wer
value: '16.96'
inference: false
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# whisper large-v2 fine-tuned on CommonVoice Arabic
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end whisper model fine-tuned on CommonVoice (Arabic Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 01-02-23 | 5.20 | 16.96 | 1xV100 16GB |
## Pipeline description
This ASR system is composed of whisper encoder-decoder blocks:
- The pretrained whisper-large-v2 encoder is frozen.
- The pretrained Whisper tokenizer is used.
- A pretrained Whisper-large-v2 decoder ([openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)) is finetuned on CommonVoice Ar.
The obtained final acoustic representation is given to the greedy decoder.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, please install tranformers and SpeechBrain with the following command:
```
pip install speechbrain transformers==4.28.0
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in Arabic)
```python
from speechbrain.inference.ASR import WhisperASR
asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-large-v2-commonvoice-ar", savedir="pretrained_models/asr-whisper-large-v2-commonvoice-ar")
asr_model.transcribe_file("speechbrain/asr-whisper-large-v2-commonvoice-ar/example-ar.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/CommonVoice/ASR/transformer/
python train_with_whisper.py hparams/train_ar_hf_whisper.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/10mYPYfj9NpDNAa0nO16Zd_K1bIEUOIpx?usp=share_link).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain
|