File size: 6,879 Bytes
a2ce4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
from speechbrain.pretrained import Pretrained

class Speech_Emotion_Diarization(Pretrained):
    """A ready-to-use SED interface (audio -> emotions and their durations)

    Arguments
    ---------
    hparams
        Hyperparameters (from HyperPyYAML)

    Example
    -------
    >>> from speechbrain.pretrained import Speech_Emotion_Diarization
    >>> tmpdir = getfixture("tmpdir")
    >>> sed_model = Speech_Emotion_Diarization.from_hparams(source="speechbrain/emotion-diarization-wavlm-large", savedir=tmpdir,) # doctest: +SKIP
    >>> sed_model.diarize_file("speechbrain/emotion-diarization-wavlm-large/example.wav") # doctest: +SKIP
    """

    MODULES_NEEDED = ["input_norm", "wav2vec", "output_mlp"]

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def diarize_file(self, path):
        """Get emotion diarization of a spoken utterance.

        Arguments
        ---------
        path : str
            Path to audio file which to diarize.

        Returns
        -------
        dict
            The emotions and their boundaries.
        """
        waveform = self.load_audio(path)
        # Fake a batch:
        batch = waveform.unsqueeze(0)
        rel_length = torch.tensor([1.0])
        frame_class = self.diarize_batch(
            batch, rel_length, [path]
        )
        return frame_class

    def encode_batch(self, wavs, wav_lens):
        """Encodes audios into fine-grained emotional embeddings

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels].
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        torch.tensor
            The encoded batch
        """
        if len(wavs.shape) == 1:
            wavs = wavs.unsqueeze(0)

        # Assign full length if wav_lens is not assigned
        if wav_lens is None:
            wav_lens = torch.ones(wavs.shape[0], device=self.device)

        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        wavs = self.mods.input_norm(wavs, wav_lens)
        outputs = self.mods.wav2vec2(wavs)
        return outputs


    def diarize_batch(self, wavs, wav_lens, batch_id):
        """Get emotion diarization of a batch of waveforms.

        The waveforms should already be in the model's desired format.
        You can call:
        ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
        to get a correctly converted signal in most cases.

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels].
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        torch.tensor
            The frame-wise predictions
        """
        outputs = self.encode_batch(wavs, wav_lens)
        averaged_out = self.hparams.avg_pool(outputs)
        outputs = self.mods.output_mlp(averaged_out)
        outputs = self.hparams.log_softmax(outputs)
        score, index = torch.max(outputs, dim=-1)
        preds = self.hparams.label_encoder.decode_torch(index)
        results = self.preds_to_diarization(preds, batch_id)
        return results

    def preds_to_diarization(self, prediction, batch_id):
        """Convert frame-wise predictions into a dictionary of
        diarization results.

        Returns
        -------
        dictionary
            A dictionary with the start/end of each emotion
        """
        results = {}

        for i in range(len(prediction)):
            pred = prediction[i]
            lol = []
            for j in range(len(pred)):
                start = round(self.hparams.stride * 0.02 * j, 2)
                end = round(start + self.hparams.window_length * 0.02, 2)
                lol.append([batch_id[i], start, end, pred[j]])

            lol = merge_ssegs_same_emotion_adjacent(lol)
            results[batch_id[i]] = [{"start": k[1], "end":k[2], "emotion": k[3]} for k in lol]
            return results
        
        
    def forward(self, wavs, wav_lens):
        """Runs full transcription - note: no gradients through decoding"""
        return self.transcribe_batch(wavs, wav_lens)


def is_overlapped(end1, start2):
    """Returns True if segments are overlapping.

    Arguments
    ---------
    end1 : float
        End time of the first segment.
    start2 : float
        Start time of the second segment.

    Returns
    -------
    overlapped : bool
        True of segments overlapped else False.

    Example
    -------
    >>> from speechbrain.processing import diarization as diar
    >>> diar.is_overlapped(5.5, 3.4)
    True
    >>> diar.is_overlapped(5.5, 6.4)
    False
    """

    if start2 > end1:
        return False
    else:
        return True


def merge_ssegs_same_emotion_adjacent(lol):
    """Merge adjacent sub-segs if they are the same emotion.
    Arguments
    ---------
    lol : list of list
        Each list contains [utt_id, sseg_start, sseg_end, emo_label].
    Returns
    -------
    new_lol : list of list
        new_lol contains adjacent segments merged from the same emotion ID.
    Example
    -------
    >>> from speechbrain.utils.EDER import merge_ssegs_same_emotion_adjacent
    >>> lol=[['u1', 0.0, 7.0, 'a'],
    ... ['u1', 7.0, 9.0, 'a'],
    ... ['u1', 9.0, 11.0, 'n'],
    ... ['u1', 11.0, 13.0, 'n'],
    ... ['u1', 13.0, 15.0, 'n'],
    ... ['u1', 15.0, 16.0, 'a']]
    >>> merge_ssegs_same_emotion_adjacent(lol)
    [['u1', 0.0, 9.0, 'a'], ['u1', 9.0, 15.0, 'n'], ['u1', 15.0, 16.0, 'a']]
    """
    new_lol = []

    # Start from the first sub-seg
    sseg = lol[0]
    flag = False
    for i in range(1, len(lol)):
        next_sseg = lol[i]
        # IF sub-segments overlap AND has same emotion THEN merge
        if is_overlapped(sseg[2], next_sseg[1]) and sseg[3] == next_sseg[3]:
            sseg[2] = next_sseg[2]  # just update the end time
            # This is important. For the last sseg, if it is the same emotion then merge
            # Make sure we don't append the last segment once more. Hence, set FLAG=True
            if i == len(lol) - 1:
                flag = True
                new_lol.append(sseg)
        else:
            new_lol.append(sseg)
            sseg = next_sseg
    # Add last segment only when it was skipped earlier.
    if flag is False:
        new_lol.append(lol[-1])

    return new_lol