File size: 4,156 Bytes
2f2b72c
 
 
 
b0cd7b0
 
2f2b72c
2e7a47d
2f2b72c
 
 
 
 
 
 
6025f3b
2f2b72c
 
ac47434
 
 
6025f3b
2f2b72c
 
 
 
ca5ef0f
2f2b72c
6025f3b
 
 
2f2b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93348e5
2f2b72c
 
 
 
 
85e2e23
 
 
 
 
1c982e7
85e2e23
 
 
 
 
 
1c982e7
 
 
8bad015
85e2e23
956c1e4
 
85e2e23
551bc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1a85f
551bc8e
cede027
551bc8e
558a270
 
 
2f2b72c
 
 
 
 
 
 
 
 
 
 
 
 
fa01851
 
 
 
 
 
 
 
 
 
 
01beb1a
fa01851
 
 
 
01beb1a
 
2f2b72c
fa01851
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
language: "en"
tags:
- Robust ASR
- audio-to-audio 
- speech-enhancement
- PyTorch
- speechbrain
license: "apache-2.0"
datasets:
- Voicebank
- DEMAND
metrics:
- WER
- PESQ
- COVL
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# ResNet-like model

This repository provides all the necessary tools to perform enhancement and
robust ASR training (EN) within
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is:

| Release | Test PESQ | Test COVL | Valid WER | Test WER |
|:--------:|:----:|:----:|:----:|:----:|
| 21-07-25 | 3.05 | 3.74 | 2.89 | 2.80 |

## Pipeline description

The mimic loss training system consists of three steps:

1. A perceptual model is pre-trained on clean speech features, the
same type used for the enhancement masking system.
2. An enhancement model is trained with mimic loss, using the
pre-trained perceptual model.
3. A large ASR model pre-trained on LibriSpeech is fine-tuned
using the enhancement front-end.

The enhancement and ASR models can be used together or
independently.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

## Pretrained Usage

To use the mimic-loss-trained model for enhancement, use the following simple code:

```python
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement

enhance_model = SpectralMaskEnhancement.from_hparams(
    source="speechbrain/mtl-mimic-voicebank",
    savedir="pretrained_models/mtl-mimic-voicebank",
)
enhanced = enhance_model.enhance_file("speechbrain/mtl-mimic-voicebank/example.wav")

# Saving enhanced signal on disk
torchaudio.save('enhanced.wav', enhanced.unsqueeze(0).cpu(), 16000)
```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (150e1890).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/Voicebank/MTL/ASR_enhance
python train.py hparams/enhance_mimic.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1HaR0Bq679pgd1_4jD74_wDRUq-c3Wl4L?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

## Referencing Mimic Loss

If you find mimic loss useful, please cite:

```
@inproceedings{bagchi2018spectral,
title={Spectral Feature Mapping with Mimic Loss for Robust Speech Recognition},
author={Bagchi, Deblin and Plantinga, Peter and Stiff, Adam and Fosler-Lussier, Eric},
booktitle={IEEE Conference on Audio, Speech, and Signal Processing (ICASSP)},
year={2018}
}
```

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```