File size: 4,341 Bytes
2f2b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac47434
 
 
2f2b72c
 
 
 
 
ca5ef0f
2f2b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93348e5
2f2b72c
 
 
 
 
85e2e23
 
 
 
 
1c982e7
85e2e23
 
 
 
 
 
1c982e7
 
 
8bad015
85e2e23
956c1e4
 
85e2e23
551bc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558a270
 
 
2f2b72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551bc8e
2f2b72c
85e2e23
48f83f0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
language: "en"
tags:
- Robust ASR
- Speech Enhancement
- PyTorch
license: "apache-2.0"
datasets:
- Voicebank
- DEMAND
metrics:
- WER
- PESQ
- eSTOI
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# 1D CNN + Transformer Trained w/ Mimic Loss

This repository provides all the necessary tools to perform enhancement and
robust ASR training (EN) within
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is:

| Release | Test PESQ | Test eSTOI | Valid WER | Test WER |
|:-----------:|:-----:| :-----:|:----:|:---------:|
| 21-03-08 | 2.92 | 85.2 | 3.20 | 2.96 |

## Pipeline description

The mimic loss training system consists of three steps:

1. A perceptual model is pre-trained on clean speech features, the
same type used for the enhancement masking system.
2. An enhancement model is trained with mimic loss, using the
pre-trained perceptual model.
3. A large ASR model pre-trained on LibriSpeech is fine-tuned
using the enhancement front-end.

The enhancement and ASR models can be used together or
independently.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

## Pretrained Usage

To use the mimic-loss-trained model for enhancement, use the following simple code:

```python
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement

enhance_model = SpectralMaskEnhancement.from_hparams(
    source="speechbrain/mtl-mimic-voicebank",
    savedir="pretrained_models/mtl-mimic-voicebank",
)
enhanced = enhance_model.enhance_file("speechbrain/mtl-mimic-voicebank/example.wav")

# Saving enhanced signal on disk
torchaudio.save('enhanced.wav', enhanced.unsqueeze(0).cpu(), 16000)
```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (150e1890).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/Voicebank/MTL/ASR_enhance
python train.py hparams/enhance_mimic.yaml --data_folder=your_data_folder

https://drive.google.com/drive/folders/1fcVP52gHgoMX9diNN1JxX_My5KaRNZWs?usp=sharing

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1HaR0Bq679pgd1_4jD74_wDRUq-c3Wl4L?usp=sharing)

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

## Referencing Mimic Loss

If you find mimic loss useful, please cite:

```
@inproceedings{bagchi2018spectral,
title={Spectral Feature Mapping with Mimic Loss for Robust Speech Recognition},
author={Bagchi, Deblin and Plantinga, Peter and Stiff, Adam and Fosler-Lussier, Eric},
booktitle={IEEE Conference on Audio, Speech, and Signal Processing (ICASSP)},
year={2018}
}
```

## Referencing SpeechBrain

If you find SpeechBrain useful, please cite:

```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/speechbrain/speechbrain}},
}
``` 

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain